

June 30, 2022

BY HAND DELIVERY, OVERNIGHT DELIVERY & ELECTRONIC MAIL

Town of Needham Planning Board Members Public Service Administration Building 500 Dedham Avenue Needham, MA 02492

Attn: Lee Newman, Planning Director

Re: <u>557 Highland Avenue</u>, Needham Heights, Massachusetts (the "Property")

Dear Planning Board Members:

As you know, we are counsel to 557 Highland, LLC, an affiliate of The Bulfinch Companies, Inc. (the "<u>Applicant</u>"), in connection with the redevelopment of the Property with a new, mixed-use development of office, laboratory, research and development uses, and retail/restaurant uses (the "<u>Project</u>"), all as described in our prior cover letter dated April 5, 2022 (the "<u>Prior Letter</u>") submitting the Application for Site Plan Review and issuance of Special Permits in connection with development of the Project (the "<u>Application</u>").

Since submission of our Prior Letter, the Applicant has engaged in seven (7) community meetings with the general public and multiple productive discussions with interested neighbors, members of the community at large, and representatives of various Town of Needham departments. At the first public hearing with the Planning Board on June 7, 2022 the Applicant discussed the following aspects of the Project:

- Project Architecture and Site Overview
- Landscape Architecture
- Sustainability
- Environmental Lab Safety
- Transportation
- Zoning Compliance

Based on feedback from the Planning Board, Town departments, and members of the community, and in anticipation of the next public hearing for the Project on July 7, 2022, enclosed as **Exhibit F** is a presentation that illustrates further refinements to the Project design based on input we have received to date, and outlines the transportation improvements proposed in connection with the Project.

Additionally, attached hereto as **Exhibit A** are the Applicant's responses to aggregated comments from the Planning Board Members at the June 7th hearing and attached hereto as **Exhibit B** are the Applicant's responses to comments received from other Town departments.

Furthermore, attached hereto as **Exhibit C**, is a response from VHB, Inc. to GPI's peer-review comments on the Project's Transportation Impact and Access Study and attached hereto as **Exhibit D** is a separate response from VHB, Inc. to Nitsch Engineering's peer-review comments on the Transportation Impact and Access Study.

Finally, attached hereto as **Exhibit E** is a copy of the Preliminary Exterior/Community Noise Evaluation/Narrative prepared by Acentech Incorporated examining compliance with MassDEP noise limits.

As detailed in the Prior Letter and affected by the supplemental materials submitted herewith, the Project continues to satisfy each of the applicable criteria for the relief requested in the Prior Letter.

We appreciate your attention to this matter. The Applicant and the entire Project team look forward to meeting with you and discussing the transportation aspects of the Project at the next public hearing on July 7, 2022.

e<mark>r</mark>y truly yours,

Timothy W Sullivan Attorney for Applicant

Enclosures

EXHIBIT A

RESPONSES TO TOWN OF NEEDHAM PLANNING BOARD COMMENTS AT JUNE 7, 2022 PUBLIC HEARING (557 HIGHLAND AVENUE)

ed with the Special Permit application
* **
es that all of the Gould Street ints will be subject to an easement in favor in of Needham for public travel. by, the plan measures all setbacks and il requirements based on the existing lot. int is working with Town Counsel ine application of setbacks in the context of id roadway improvements.
an climate change on the Project may an flooding and extreme heat events. It to urban flooding, the Property is sone X (area of minimal flood hazard) of FEMA Flood Insurance Rate Mapping. It is get to consists almost completely of buildings and paved parking lots. The roject represents a 1.8-acre decrease in coverage compared to the existing. This reduction in impervious coverage, it in decreased stormwater detention result in decreased stormwater peak runoff olumes from the Site overall. The project is significant decrease in peak rates to the sDOT and municipal drainage systems to the ist tributary, reducing downstream tential should those systems become in extreme precipitation events. The project is tributary and infiltration to booling demand and better maintain indoor a conditions; high efficiency chilled water aimize cooling demand and energy usage;
n yl a n C n a si C O Sin t i a n O s

Question/Topic	Response
Whether the planned solar array will violate any height restrictions in zoning.	Pursuant to Section 4.11.2 of the Zoning By-Law, the parking garage may be allowed a maximum height of 55 ft. by special permit. Pursuant to Section 4.11.1(1)(e) "Structures erected on a building and not used for human occupancy, such as solar or photovoltaic panels and the like may exceed the maximum building height provided that no part of such structure shall project more than 15 feet above the maximum allowable building height, the total horizontal coverage of all of such structures on the building does not exceed 25 percent, and all of such structures are set back from the roof edge by a distance no less than their height."
	and the Applicant has requested a special permit for this increased height. The proposed solar photovoltaic canopies on the parking structure may not exceed the 15 ft. limit imposed by Section 4.1.1(1)(e), which we assume is applicable to parking structures, depending upon final design. However, the proposed solar photovoltaic canopies would likely exceed the maximum horizontal coverage limitation of 25%.
Is there an opportunity to further reduce parking and what the impacts on the project might result?	The Project is requesting a reduction in proposed parking based upon documented employment densities of other peer research and development centers in eastern Massachusetts. With approximately 1,408 parking spaces proposed on-site, there will be adequate parking provided for the Project.
Can additional green space be incorporated into the design?	The site design has been revised to address prior community comments with an aim to include less grass and to maximize diverse and native plantings.
Will all amenities be accessible by the community?	All outdoor amenities for the Project are intended to be available to the public, as will the retail/restaurant tenant spaces.
Can the bike lanes/infrastructure be designed to favor families instead of commuters?	In close consultation with our neighbors, we are working to develop transportation improvements, including separated bike lanes/infrastructure that

Question/Topic	Response
	address neighborhood concerns along Gould Street on or adjacent to the Property.
Can the scale of the structures along Gould Street be further offset or reduced?	As we further studied moving the North Loading Dock from the Gould Street elevation to the north side of the building, we have studied different fenestration options which may help the building read at a smaller scale on this elevation, but will still provide the areas needed to best serve the building tenants and community. Additional trees/planting are being considered in order to help further screen the building from view along Gould Street.
Can the planned greenbelt be connected to the park/trail across from TV Place on neighboring property?	This is currently part of a separate property at 0 Gould Street and no changes to this property are anticipated at this time.
What will acoustic levels be from rooftop mechanicals?	The Applicant has engaged Acentech as an acoustical consultant to provide a qualitative report on this topic and the results of the report are included as Exhibit E to this letter.
Provide additional clarity on loading dock operations and whether loading dock access can be provided off of TV Place rather than facing Gould Street.	Due to the location of the garage structure, as required by the recent rezoning, locating the North Building's loading dock off of TV Place was not achievable. However, the team has reviewed moving the loading dock to the north side of the North Building so the loading dock no longer faces Gould Street, which adds additional window area and a park along the west face of the North Building.
Has the Fire Department approved of the driveway/roadway widths and can a permeable paving material be used for emergency lanes?	In our meeting with the Fire Department on March 24, 2022, the Fire Department requested fire access lanes around the building which are being provided. These lanes are to be 18' minimum width, but 20' preferred due to snow clearing. The landscape architect is planning to provide the fitness path as bituminous concrete or gravel, then flank the sides with permeable structured grass or permeable pavers if allowed by the Fire Department.

Question/Topic	Response
Can additional public transportation be provided through relocating or adding an MBTA bus route?	The Applicant will reach out to MBTA to evaluate the feasibility of providing additional MBTA service. However, in light of the MBTA's Bus Network Redesign plan, released in May 2022, which proposes to maintain Route 59's existing alignment in Needham while eliminating route variations in Newton, the Applicant thinks it unlikely that the MBTA will agree to shift a segment of Route 59 from serving residential neighborhoods to serving the Project site. The Applicant will be providing a direct shuttle service (via use of an electric shuttle) that will
	Project site. The Applicant will be providing a direct shuttle

EXHIBIT B

RESPONSES TO TOWN OF NEEDHAM DEPARTMENT COMMENTS (557 HIGHLAND AVENUE)

Question/Topic	Response					
FIRE DEPARTMENT						
Confirm with the Fire Department to ensure public safety vehicle access during the winter.	Final plans will be resubmitted for Fire Department approval including all truck turn requirements, etc., to confirm acceptable access as is required by applicable codes and regulations.					
POLICE DE	PARTMENT					
Address potential for use of cut-through streets off of Gould Street and address potential use of Noanett, Ellis, Kearney, Beech and Arnold Streets as cut-through streets to avoid light at Gould and Central intersection. Place signage at these locations restricting traffic during commuting hours.	The Applicant will work with the Town to design and install signage at Noanett Road to deter unwanted cut-through turning movements during the weekday peak commuting hours. In addition, the installation of a traffic signal at Central Avenue and Gould Street will improve operations on Gould Street and reduce the desire for vehicles to use side streets as a cut-through by providing gaps for vehicles to turn efficiently at that intersection. The Applicant will supplement these actions with information dissemination and enforcement funding in connection with close collaboration with the Needham Police Department.					
Address potential impacts on Hunting and Greendale from drivers utilizing these streets during hours of heavy traffic on Route 128.	Traffic volumes on Hunting and Greendale have decreased in the last several years due to the completion of the Route 128 add-a-lane project in the area, and most notably, due to the implementation of the new interchange connection at Kendrick Street. The Project is expected to add only a very small number of new trips to Hunting and Greendale, as the additional southbound left-turn lane on Gould Street will make it easier for drivers from the site to directly access Route 128 via Highland Ave. In addition, the Applicant will fund the installation of radar embedded speed limit signs along Hunting Road as a measure to deter speeding during off-peak hours.					

Question/Topic	Response
Confirm that walking paths, bike paths, and similar spaces running around perimeter of project site have adequate emergency vehicle access.	The perimeter paths along Highland Avenue / Route 128 have been designed with stabilized gravel shoulders that will provide 20' wide emergency access. A 20' wide gravel access drive has also been provided around the proposed garage.
BUILDING D	EPARTMENT
The site as presented appears to meet the zoning regulations for the site, Special Permits are required for some dimensional requirements based on the design of the structures.	The Applicant has requested such special permit relief in its Application.
PUBLIC WORKS	DEPARTMENT
We are seeking clarification for the facility's proposed water use of 129,172 GPD while the wastewater design flow generation is 54,554 GPD.	Water demand and sewer generation for lab uses can vary and are highly dependent on the specific processes involved. These numbers have been estimated by the Project's MEP Engineer. The difference between the water demand and sewer generation represents water that will be consumed or otherwise used up by lab processes and mechanical equipment (such as evaporative cooling).
We expect to work with the developer on determining the optimum water loop design. The current proposal shows a 10-inch water connection to the site off a 12-inch main on Gould Street and a connection to an existing 8-inch water main on TV place. The additional loop connection may be more optimum if connected from Highland Avenue in front of the development instead of, or an addition to the 8-inch on TV Place connection.	The Applicant will work with the Town to coordinate the water loop connection points. Connections to the 12-inch mains in Highland and Gould as described can be incorporated into a future revised utility plan.
We concur with traffic comments/ recommendations prepared by GPI in their April 25, 2022 letter to the Planning and Community Development Office.	Reponses to the peer review comments by GPI are included as Exhibit C .
We expect the Developer to work with the town in providing an alteration/taking plan and recordings for a new Road Right of Way layout on Gould Street and to optimize the traffic signals at Highland at Gould.	The Applicant will work with the Town to develop and finalize the necessary alteration/taking plan and recordings for a new Road Right of Way layout on Gould Street and to optimize the traffic signals at Highland at Gould.

Question/Topic	Response
For the new facility, four times the increased flow equates to a total of 126,004 GPD I/I removal anticipated from the development. This may be satisfied by either undertaking a construction project or paying a fee to the Town's I&I program at a rate of \$8.00 per gallon required to be removed. We are in the process of analyzing the target areas for the inflow/infiltration to be removed and expect to work with the developer through the site plan approval process	The Applicant will work with the Town to satisfy the I/I removal requirements.
As part of the NPDES requirements, the applicant must comply with the Public Outreach & Education and Public Participation & Involvement control measures. The applicant shall submit a letter to the town identifying the measures selected and dates by which the measures will be completed in order to incorporate it into the Planning Board's decision If emergency generators are proposed, they should indicate on the plans with proper screening and noise reduction according to a sound study for the proposed generators	The Applicant understands that the Town's Stormwater Management Program, prepared in accordance with NPDES MS4 General Permit, requires the Town to perform public education and outreach / public involvement and participation. The Applicant will work with the Town to satisfy any of these requirements applicable to the Project. Emergency Generators will be provided as required by code for life safety and emergency uses. Separate tenant backup generators may also be provided to support the lab and office uses of the building. All emergency generators are currently planned to be located on the roofs behind the mechanical screen walls with final number and locations being determined. The generators will be designed to meet all sound and noise reduction requirements of the
PUBLIC HEAI	Town and state. LTH DIVISION
Food Establishments will require approval through Food Permit Plan Review, including evaluation of adequacy of dumpsters, grease traps, etc.	Upon selection of final tenants for the restaurant space, all Food Establishment tenants will undergo the necessary permitting and approval process, including review by Needham's Public Health Division. Adequate grease traps are planned for the retail and restaurant space with final design to be determined as the Project advances and tenants are chosen. There will be interior waste/recycling rooms.
Continue working on environmental remediation of the site and provide continual updates to Public Health on remediation efforts.	The Applicant will comply with applicable environmental laws and will provided updates to the Needham Public Health Department as appropriate.

Question/Topic	Response
Obtain MassDEP approval for reclaiming water, specifically for - cooling tower water, toilet and urinal flushing, boiler feed, industrial process water and irrigation for landscaped areas, etc. All these uses are allowed under 314 CMR 20.00., if approved.	No wastewater re-use is planned for the Project. The Project will capture and reuse stormwater and will file for necessary MassDEP permitting.
Any biolaboratory proposed as part of the Project must complete the Public Health Division's online permitting application including provision of proper biohazardous waste containment.	The Applicant will require any life sciences tenants to comply with all applicable rules and regulations.
DESIGN REV	VIEW BOARD
Provide Design Review Board with updates to project landscaping, lighting, and screening in connection with the Design Review Board's comments.	The Applicant intends to submit the information requested by the Design Review Board's comments for the Board's consideration.

EXHIBIT C

RESPONSE TO GPI COMMENTS ON TRANSPORTATION IMPACT AND ACCESS STUDY (557 HIGHLAND AVENUE)

[see attached]

To: Lee Newman
Director of Community Planning and Development
Town of Needham, MA

Project #: 15306.00

Date: June 29, 2022

From: Sean Manning, PE, PTOE Matthew Duranleau, PE Re: Response to Transportation Impact and Access Study Traffic Peer Review Comments dated May 27, 2022

By Greenman-Pedersen Inc. (GPI)

557 Highland Avenue Needham, Massachusetts

Overview

VHB has received and reviewed the Transportation Impact and Access Study (TIAS) Transportation Engineering Peer Review submitted to the Town of Needham by the Town's traffic review firm, Greenman-Pederson, Inc (GPI), dated May 27, 2022, for the proposed 557 Highland Avenue redevelopment in Needham, Massachusetts. This memorandum summarizes VHB's responses to the comments. Each comment raised by the reviewer is listed below followed by the response by VHB. The comments follow the format and structure outlined in the Transportation Engineering Peer Review.

Since the submittal of the Transportation Engineering Peer Review, the Proponent has received feedback from the community and the Town of Needham on the proposed Gould Street off-site improvements, including the desire for more family-friendly bicycle accommodations and the wish to reduce the amount of new pavement added on Gould Street. Based on this feedback, the following roadway improvement concepts have been developed:

- Option 1: Previously Proposed Concept
- > Option 2: Two-Way Separated Bicycle Lanes on East Side with Reduced Gould Street Cross-Section
- Option 3: Two-Way Separated Bicycle Lanes on West Side with Reduced Gould Street Cross-Section

Concept plans for the three improvement alternatives along Gould Street as well as for the intersection of Central Avenue at Gould Street are included in the Attachments to this memorandum.

The two additional improvement concept plans include dedicated sidewalk-level bicycle facilities in each direction along Gould Street between Highland Avenue and just north of TV Place. In addition, the two additional concepts eliminate the Gould Street dedicated northbound right-turn lane into TV Place and the dedicated southbound right-turn lane onto Highland Avenue based on feedback from the Town of Needham to reduce the amount of pavement. While these turn lanes were included in the initial concept design, the lanes are not required to provide an adequate level of operations for vehicles. Intersection traffic analyses for the new concepts are included in the Attachments to this memorandum.

Peer Review Comments

General Comments

1. As the project directly abuts the state highway layout (SHLO) on Interstate 95 / Route 128 and is anticipated to generate more than 3,000 vehicle trips per day (vpd), the project will require review by the Massachusetts Environmental Policy Act (MEPA) office in the form of an Environmental Notification Form (ENF) and a

Ref: 15306.00 June 29, 2022

Page 2

mandatory Environmental Impact Report (EIR). An ENF was prepared by the Applicant and noticed in the Environmental Monitor on April 8, 2022. The TIAS was included as a chapter within the ENF. A Certificate on the ENF was issued by MEPA on May 9, 2022. GPI previously provided comments to the MEPA office on behalf of the Town of Needham regarding the ENF, and a copy of these comments in included as an Attachment for reference. Many of GPI's comments were incorporated into the recommendations of the ENF Certificate, which include:

- a. Table 2-9 of the ENF indicates that the traffic operations at the intersections of Highland Avenue / West Street will drop from LOS C to D and the operations of Highland Avenue / Gould Street / Hunting Road will degrade from LOS E to F as a result of the additional traffic generated by the project. The Applicant is requested to explore the feasibility of implementing additional measures to improve operations at these locations, including an additional northbound lane on Hunting Road.
- b. Collision diagrams should be prepared for any study area intersections experiencing an average of more than 3.0 collisions per year and a crash rate higher than the statewide or district-wide average.
 The Applicant should investigate measures to improve safety and mitigate collision occurrence at any locations where five or more collisions of a similar type have occurred over the analysis period.
- c. The Applicant should perform an estimate of the potential bicycle parking demand generated by the project to ensure adequate bicycle parking is provided for an effective Transportation Demand Management (TDM) program.

<u>Applicant Response:</u> The Draft Environmental Impact Report (DEIR) will incorporate all comments received on the ENF and will include a response to comments chapter that will provide written responses to each respective comment. The DEIR is expected to be submitted on July 15, 2022.

- 2. The project will also require a Vehicular Access Permit from MassDOT for the proposed change-in-use of the property, as well as for the construction of off-site roadway improvements within the SHLO. As such, the ENF was reviewed by the MassDOT District 6 office, as well as the Public-Private Development Unit (PPDU). The following comments from MassDOT were incorporated into the ENF Certificate issued by MEPA:
 - a. The Applicant should evaluate queuing at the study area intersections to ensure that lengthier queues do not impact the operation of roadways and railways within the study area.

<u>Applicant Response:</u> To understand the queueing impacts of operations at each study area intersection under the 2022 Existing Conditions, 2029 No Build Conditions, and 2029 Build Conditions, queue diagrams have been developed for the weekday morning and weekday evening peak hours. The queue diagrams for each study area intersection are provided in the Attachments to this memorandum.

As shown in the queue diagrams, the addition of the Project-generated vehicle trips is expected to result in minimal changes in queue lengths at most of the study area intersections. For intersections where there is a noticeable impact in queue caused by the Project, mitigation has been proposed to try and offset those impacts.

While the maximum queues on the Highland Avenue westbound approach are expected to extend beyond the I-95 southbound off-ramp under the 2029 Build Conditions with mitigation during both

Ref: 15306.00 June 29, 2022

Page 3

peak hours, this situation is expected to occur as well under the 2029 No Build Conditions without the Project. As the I-95 southbound off-ramp is over 1,500 feet in length, any queue on the I-95 southbound off-ramp is not expected to spill back onto the I-95 southbound mainline. In addition, the queues on Highland Avenue westbound are not expected to extend back far enough in the 2029 Build Condition to impact the weaving operations between the I-95 northbound off-ramp and the I-95 southbound on-ramp, which are expected to operate at LOS B or better.

b. The Applicant should perform an analysis of the existing and proposed weave conditions on Highland Avenue to ensure that the increased traffic volumes will not lead to degraded safety conditions in the area of the I-95 / Highland Avenue interchange.

<u>Applicant Response:</u> Weaving analyses based on methodology from the Highway Capacity Manual (HCM) were conducted on Highland Avenue at the I-95 interchange and presented in the TIA. For informational purposes, the weaving analyses results are presented below as well.

Weaving segment analyses were conducted at the following ramp junction locations:

- Highland Avenue Eastbound between the I-95 Southbound Off-Ramp and the I-95 Northbound On-Ramp
- Highland Avenue Westbound between the I-95 Northbound Off-Ramp and the I-95 Southbound On-Ramp

Analyses were conducted during the weekday morning and weekday evening peak hours under the 2022 Existing, 2029 No Build, and 2029 Build Conditions. A summary of the weave segment analyses is presented in Table 1 and the detailed analysis worksheets are provided in the Attachments to this memorandum.

Table 1 Weave Segment Capacity Analysis Summary

	2022 Existing Conditions		2029 No Build Conditions			2029 Build Conditions			
Location/Period	v/c ^a	Density ^b	LOSc	Demand	Density	LOS	Demand	Density	LOS
Highland Avenue EB between I-95 SB									
Off-Ramp and I-95 NB On-Ramp									
Weekday Morning	0.53	18.5	В	0.66	24.3	C	0.66	24.7	C
Weekday Evening	0.30	10.2	Α	0.38	13.0	В	0.44	15.2	В
Highland Avenue WB between I-95									
NB Off-Ramp and I-95 SB On-Ramp									
Weekday Morning	0.22	6.5	Α	0.26	7.9	Α	0.34	10.1	Α
Weekday Evening	0.31	10.9	Α	0.38	13.9	В	0.40	14.3	В

- a volume to capacity ratio
- b density, in passenger cars per mile per lane
- c level of service

As shown in Table 1, the weaving locations for the interchange of Highland Avenue at I-95 are expected to operate at LOS C or better during the weekday morning and weekday evening peak hours under the 2022 Existing, 2029 No Build, and 2029 Build Conditions. The addition of Site-

Ref: 15306.00 June 29, 2022

Page 4

generated traffic is not expected to result in a degrade in level of service for either Highland Avenue weaving location.

c. The Applicant should coordinate with the Massachusetts Bay Transit Authority (MBTA) to determine the feasibility of additional MBTA Bus Route 59 service closer to the project site and include feasible options in the Draft EIR.

Applicant Response: Prior to the submittal of the FEIR, the Proponent will reach out to the MBTA to understand if there are opportunities to modify bus access in the area to better support transit connectivity to the Project site. As noted in the TIA, the nearest MBTA bus stop to the Site for MBTA Route 59 is nearly a half-mile away on Webster Street. Since the publication of the ENF, the MBTA released a draft plan of the Bus Network Redesign in May 2022. The Bus Network Redesign is a full review and overhaul of all bus routes operated by the MBTA with the goal to create a better experience for current and future bus riders. The MBTA spent several years developing the draft Bus Network Redesign plan based on demographics, employment districts, traffic congestion, and travel patterns. As shown in the draft plan of the Bus Network Redesign, Route 59 is proposed to maintain its existing alignment through Needham while eliminating different variations of the route through Newton to simplify operations. Route 59 is expected to operate every 60 minutes or less between at least 6:00 AM and 7:00 PM, seven days a week.

The Proponent was requested in the ENF certificate to review the feasibility of providing additional MBTA Bus Route 59 service closer to the Site. As currently proposed, Route 59 will not travel closer to the Site than it does under existing conditions and will continue to operate along Webster Street and Central Avenue. As one of the goals of the Bus Network Redesign is to simplify operations, it is unlikely that a new variation of Route 59 would be supported that stops at the Site for some routes and continues to serve the residential areas along Webster Street and Central Avenue for other routes. If Route 59 was revised to directly serve the Site, it would no longer provide access to the residential areas along Webster Street and Central Avenue.

To maintain transit service to the residential areas along Webster Street and Central Avenue while also providing transit connection to the Site, the Proponent is committed to providing a dedicated shuttle service that will run between the Site and nearby public transportation stations, such as the commuter rail at Needham Heights and the Green Line D Branch at Newton Highlands. This will provide a direct connection between the Site and the public transportation network throughout greater Boston without negatively impacting transit service to the existing residential areas in Needham served by Route 59.

d. MassDOT requests that the Applicant consider installing bicycle and pedestrian improvements on Highland Avenue at the I-95 Interchange to connect with the proposed Complete Streets improvements being installed as part of MassDOT Project #606635 along Highland Avenue.

<u>Applicant Response:</u> Portions of Highland Avenue within the study area are currently under construction as part of the MassDOT Needham-Newton Corridor Project (MassDOT Project No. 606635). As part of this project, new raised bicycle lanes will be constructed in each direction along

Ref: 15306.00 June 29, 2022

Page 5

Highland Avenue between Webster Street and just east of Gould Street / Hunting Road and between Wexford Street and the Charles River.

The segment of Highland Avenue within the I-95 interchange (including the bridge over I-95) was recently rebuilt and reconstructed as part of the Route 128/I-95 add-a-lane project. Construction was completed in 2018 and included significant improvements to the pedestrian and bicycle accommodations, including new sidewalks and buffered bicycle lanes on each side of Highland Avenue. The buffered bicycle lanes in each direction are separated from the general-purpose travel lanes on Highland Avenue by a painted buffer 2-4 feet in width which provides greater separation between vehicles and bicyclists than provided by traditional bicycle lanes. In addition, pedestrian and bicycle crossings were provided across all the interstate on-ramps and off-ramps, with signage and pavement markings included to enhance the visibility of the crossing pedestrians and bicyclists, with green paint used for the bicycle crossings.

The Proponent will coordinate with MassDOT to ensure the proposed improvements along Gould Street will tie into the accommodations along Highland Avenue. As the design for Highland Avenue went through many years of review and coordination, the Proponent will respect the recent and ongoing work on Highland Avenue and enhance the connections between Highland Avenue, the Site, and the nearby residential areas.

e. The Applicant should provide a description of the methodology to be used to estimate the effectiveness of the proposed Transportation Demand Management (TDM) measures and discuss what remedial measures will be taken if the monitoring program indicates that the TDM program is less effective than anticipated in reducing single-occupant vehicle (SOV) trips and encouraging alternative means of travel to/from the site.

Applicant Response: The success of the TDM plan will be measured based on the results of the transportation monitoring program. The transportation monitoring program will include annual 24-hour driveway and parking garage counts on-Site, peak hour turning movement counts and operational capacity analyses at four nearby intersections, and a travel survey for employees and customers on-Site. The transportation monitoring program will begin six months after full occupancy of the proposed development and continue for a period of five years. The results of each transportation monitoring program will be summarized in a report and provided to MassDOT and to the Town of Needham.

Based on the results of the transportation monitoring program, the Proponent will evaluate the TDM program to see if any modifications are necessary to further engage the employees and patrons of the Site to encourage the use of walking/biking, carpooling, and public transportation. If the transportation monitoring program indicates that the actual traffic increase generated by the Project exceeds the traffic projections contained within the TIA by ten percent or more, the Proponent will increase funding for the TDM program and add more measures to try and reduce the share of single occupancy vehicles accessing the Site. The Proponent will coordinate with the Town of Needham and MassDOT to determine potential additional TDM measures that could be implemented if the actual Site-generated volumes exceeds the projections in the TIA by 10-percent or more.

Ref: 15306.00 June 29, 2022

Page 6

f. The proposed Transportation Monitoring Program should include a travel survey of employees and patrons of the site. Although MassDOT did not provide any further details on this request, it is assumed that the travel survey will be designed to verify the distribution of site-generated trips and mode share in order to assess the efficacy of the proposed TDM program.

Applicant Response: The proposed transportation monitoring program will include an annual travel survey of employees and patrons of the Site. The survey will be conducted by the Proponent and will include details on the mode of transportation employees and patrons use to access the Site as well as the effectiveness of the proposed TDM programs. The survey will also ask about hybrid work schedules to determine how frequently employees commute to the Site versus working from home. The results of the survey will be used to review the current TDM program and decide if any tweaks are necessary to further engage the employees and patrons of the Site to encourage the use of walking/biking, carpooling, and public transportation.

Study Area

3. The TIAS includes an evaluation of the impact to traffic operations associated with the project at a total of twenty (20) intersections, which include all nine of the study intersections included as part of the Traffic Impact Study prepared for the original rezoning. GPI concurs that the study area is appropriate for the size and scale of the development and includes those intersections which are likely to experience a measurable impact from the proposed redevelopment.

Applicant Response: No response needed

Existing Conditions

4. The TIAS included an evaluation of the operations of the study area intersections during the weekday AM and PM peak periods, which are consistent with typical commuter peaks on the adjacent roadway networks. GPI concurs that these time periods represent the critical time periods for analysis as they represent the peak hours of both adjacent street traffic and site-generated vehicle trips.

Applicant Response: No response needed

- 5. The Existing Conditions Vehicle Volumes were derived from traffic counts obtained from a number of sources, many of which were collected prior to the COVID-19 pandemic. New traffic counts were collected in July 2021 at the following intersections:
 - Central Avenue at Cedar Street
 - Central Avenue at Webster Street
 - Highland Avenue at Hunnewell Street

Ref: 15306.00 June 29, 2022

Page 7

All other traffic counts contained within the traffic study were collected pre-pandemic and adjusted to existing conditions utilizing MassDOT's approved Yearly Growth Factors and balancing between intersections. Regardless of which traffic count was collected more recently, the traffic volumes between intersections were always balanced upward to the higher traffic count. GPI concurs that this methodology is acceptable and will result in the most conservative (highest) estimate of existing traffic conditions through the study area intersections.

Applicant Response: No response needed

6. Traffic counts at many of the study area intersections were obtained from previously seasonally-adjusted traffic volumes from other traffic studies. However, raw traffic counts collected in April 2017 were obtained from the Highland Avenue Reconstruction Functional Design Report for the Highland Avenue / Webster Street intersection. Similarly, raw traffic counts collected in January 2018 were obtained from the Northland Newton Development DEIR for the Highland Avenue intersections with the I-95 Northbound and Southbound ramps. MassDOT Weekday Seasonal Factors data was provided in the TIAS Appendix for the 2019 year only. Since the traffic counts were collected in 2017 and 2018, it would be expected that seasonal adjustment factors for those years would have been used to seasonally adjust the raw traffic volumes. MassDOT's Weekday Seasonal Factors data for 2017 and 2019 both indicate that traffic volumes in April represent above-average conditions for Group Factors U3-U7. Therefore, no seasonal adjustment would be required for the Highland Avenue / Webster Street intersection. It is unclear what, if any, seasonal adjustment factor was applied to the volumes at the Highland Avenue intersections with the I-95 ramps. However, the MassDOT Weekday Seasonal Factors data for 2018 indicates that January traffic volumes for Factor Group U3 represent above-average month conditions. Therefore, no seasonal adjustment factor would be required for the Highland Avenue intersections with the I-95 ramps.

Applicant Response: No seasonal adjustments were applied to the intersection of Highland Avenue at Webster Street, as both the 2017 and 2019 MassDOT seasonal adjustment factors indicate that April represents a month with above-average traffic volumes. To provide a conservative analysis, the volumes at the Highland Avenue intersection with the I-95 ramps were seasonally adjusted by six percent based on the 2019 MassDOT seasonal adjustment factors, which indicate that traffic volumes in the month of January were approximately six-percent lower than average conditions for U3 roadways (principal arterials). While it would have been more accurate to use the 2018 MassDOT seasonal adjustment factors (since the counts were conducted in January 2018), using the 2019 MassDOT seasonal adjustment factors results in a more conservative analysis as the 2018 factors would have resulted in no seasonal adjustment.

7. No adjustment was applied to the traffic volumes collected in July 2021 to account for any variations due to COVID-19. However, these traffic counts were balanced upward with traffic counts collected at adjacent intersections under pre-COVID conditions. GPI concurs that this methodology for adjustment is acceptable.

Applicant Response: No response needed

Ref: 15306.00 June 29, 2022 Page 8

Collision History

8. Per MassDOT guidelines, collision diagrams should be prepared for any locations that experience an average of more than 3 crashes per year or a crash rate higher than the state or district-wide average. The intersection of Highland Avenue / West Street experienced an average of 4.4 crashes per year and a crash rate higher than the state and district-wide averages. Similarly, the Highland Avenue / Second Avenue intersection experiences an average of 6.6 collisions per year and a crash rate above the state and district-wide averages. Therefore, the Applicant should obtain detailed collision reports for these intersections and prepare collision diagrams to identify any collision patterns occurring at these locations, as well as potential measures to reduce the occurrence of such collisions.

<u>Applicant Response:</u> Based on a review of the crash data, the following five intersections either have a crash rate above the district average or experienced an average of three or crashes per year:

- > Highland Avenue at West Street
- > Highland Avenue at Gould Street / Hunting Road
- > Highland Avenue at 1st Avenue
- > Highland Avenue at 2nd Avenue
- > Hunting Road at Kendrick Street

Of these five intersections signalized intersections, only the intersection of Highland Avenue at West Street has a crash rate higher than the state and district-wide averages. Table 2 summarizes the crash rate for each intersection as compared to the district and state averages:

Table 2 Intersection Crash Rate Comparison

Location	Highland Ave at West St	Highland Ave at Gould St / Hunting Rd	Highland Ave at 1 st Ave	Highland Ave at 2 nd Ave	Hunting Rd at Kendrick St
Intersection Crash Rate ^a	0.86	0.44	0.41	0.64	0.63
District Average Crash Rate ^b	0.71	0.71	0.71	0.71	0.71
Statewide Average Crash Rate ^c	0.78	0.78	0.78	0.78	0.78
Exceeds District/ State Averages?	Yes	No	No	No	No

- intersection crash rates as reported in Table 2 (Vehicular Crash Summary) in the TIA.
- b Average crash rate for signalized intersections in District 6 (the district in which Needham is located) based on MassDOT website.
- Statewide crash rate for signalized intersections based on MassDOT website.

It should be noted that several of these intersections are currently being reconstructed or have recently been reconstructed in connection with ongoing roadway improvements being led by MassDOT. The intersections of Highland Avenue at Gould Street/Hunting Road and Highland Avenue at 2nd Avenue are both currently being reconstructed as part of the MassDOT roadway improvements, and the intersection of Highland Avenue at 1st Avenue was reconstructed in 2018. Since the crash data reviewed was between 2015 and 2019, these improvements are expected to address some of the safety concerns and are not reflected in the crash data.

Collision diagrams have been developed at the identified intersections above, expect for the intersections of Highland Avenue at 1st Avenue and 2nd Avenue, as the crash data does not reflect roadway improvements

Ref: 15306.00 June 29, 2022

Page 9

and the project-related impacts are smaller at those two intersections. The collision diagrams are included in the Attachments to this memorandum.

As shown in the collision diagrams, angle crashes were most prevalent at the three intersections studied. At Highland Avenue and West Street, 6 angle crashes and 3 side-swipe, same direction crashes occurred at the intersection and 2 crashes involved bicyclists. At Highland Avenue and Gould Street/Hunting Road, 6 angle and 4 side-swipe, same direction crashes occurred. At Hunting Road and Kendrick Street, 7 angle crashes occurred.

The high prevalent of angle crashes may indicate conflicts between turning vehicles and through vehicles. This could be caused by drivers becoming frustrated with congestion and trying to turn when there are insufficient gaps in opposing traffic. To improve operations and reduce congestion at the three intersections where collision diagrams were developed, signal timing modifications are proposed as mitigation.

- 9. The following additional intersections also experienced an average of more than three (3) collisions per year, and collision diagrams should be prepared to identify any collision patterns or potential mitigating measures at these intersections:
 - Highland Avenue / First Avenue
 - Hunting Road / Kendrick Street

<u>Applicant Response:</u> As noted in the response to Comment 8, a collision diagram was developed for the intersection of Hunting Road at Kendrick Street. A collision diagram was not developed for the intersection of Highland Avenue at 1st Avenue, as that location was recently reconstructed which is not fully reflected in the crash data.

10. Although the intersection of Highland Avenue / Gould Street / Hunting Road also experienced more than three collisions per year, the crash rate was well below the state and district-wide averages. In addition, significant improvements were recently constructed by MassDOT that may reduce collisions at this location. Further, additional improvements are proposed at this intersection as mitigation for the proposed development, which may also impact collision occurrence. Therefore, preparation of a collision diagram for this location is not required. However, GPI recommends that the proposed Post-Occupancy Monitoring Program include a review of collisions occurring at this location following construction of the proposed mitigation measures to ensure that a new safety issue is not introduced.

Applicant Response: Since the Project is expected to impact operations at the intersection of Highland Avenue at Gould Street/Hunting Road and the proposed mitigation will include geometric and signal changes at this location, a collision diagram was developed, as noted in the response to Comment 8. If requested by the Town of Needham and MassDOT, the Proponent will review crash data at the intersection as part of the proposed Post-Occupancy Monitoring Program to ensure that a new safety issue is not introduced.

Ref: 15306.00 June 29, 2022 Page 10

2029 No-Build Conditions

11. The Applicant has projected traffic volumes to a seven-year design horizon consistent with MassDOT guidelines utilizing a background growth rate of 1.0 percent per year and adding traffic to be generated by other proposed or approved developments in the surrounding area. GPI concurs with this methodology.

Applicant Response: No response needed

Trip Generation

12. Table 3 of the TIAS notes that the existing site-generated trips were estimated based on empirical traffic counts collected at the site driveways, which show only 887 daily trips are currently generated by the site. It is important to note that these empirical counts were collected in the fall of 2021, during COVID, and as a result, may under-estimate the trips generated by the site pre-COVID when it was fully operational. The use of the lower existing site-generated trips will result in a more conservative (higher) estimate of the net increase in trips generated by the proposed redevelopment.

Applicant Response: Due to a lack of data for traffic volume entering and exiting the existing driveways on-Site prior to the beginning of the pandemic, the existing site-generated trips were counted on July 14, 2021. While this represents a condition during the COVID-19 pandemic, the counts were conducted after the Commonwealth was beginning to enter a "new normal" phase and after the emergency order was rescinded.

To see if the site-generated trips observed in July 2021 generally aligns with the trip generation levels of a car wash and a car dealership, the empirical counts have been compared against the expected rates from the Institute of Transportation Engineers (ITE). Table 3 provides a comparison of the empirical rates for the previous uses and the ITE-generated rates (based on data provided in the ITE Trip Generation Manual). The ITE worksheets for the previous uses on-Site are included in the Attachments to this memorandum.

Ref: 15306.00 June 29, 2022 Page 11

Table 3 Comparison of Empirical and ITE Trips for Existing Site Uses

	Empirical Counts (July 2021) ^a			ITE Trip Generation		
	Car Dealership	Car Wash	Total	Car Dealership ^b	Car Wash ^c	Total
Weekday Daily						_
Enter	233	177	410	489	n/a	n/a
<u>Exit</u>	<u>300</u>	<u>177</u>	<u>477</u>	<u>489</u>	<u>n/a</u>	<u>n/a</u>
Total	533	354	887	978	n/a	n/a
Weekday Morning						
Enter	27	10	37	40	n/a	n/a
<u>Exit</u>	<u>19</u>	<u>5</u>	<u>24</u>	<u>34</u>	<u>n/a</u>	<u>n/a</u>
Total	46	15	61	75	n/a	n/a
Weekday Evening						
Enter	8	21	29	42	27	69
<u>Exit</u>	<u>33</u>	<u>24</u>	<u>57</u>	<u>50</u>	<u>27</u>	<u>77</u>
Total	41	45	86	92	54	146

- a Based on actual counts by VHB in July 2021.
- b Based on ITE LUC 840 (Automobile Car Sales (New)), using regression equation for daily trips and peak hour of generator trips.
- c Based on ITE LUC 948 (Automated Car Wash), using average rates for peak hour of generator trips. No data provided for daily or weekday morning peak hour trips.

As shown in the table above, the empirical counts conducted in July 2021 are measurably lower than what would be expected based on ITE rates. The summer is generally a slower time for the previous uses on Site, especially for a car wash that commonly is busiest in the Winter and early Spring. Since the ITE trip rates are based on data collected at sites across the country over several decades and most-likely from different times of the year, it is not surprising that the empirical volumes do not exactly match the ITE-projected volumes and variation between the two sets of data is generally to be expected.

While July 2021 empirical data may represent a slightly lower volume of existing Site-generated trips than the Site may have generated on an average non-summer weekday prior to the pandemic, no adjustments have been made to the trip generation or the analyses presented in the TIA. Since the Site-generated volumes presented in the TIA include a credit for the trips currently generated by the Site, using the lower empirical data provides a much more conservative analysis for the trip generation and intersection operational analyses. Therefore, no changes have been made to the analyses to take further credit for the higher volume of trips that the Site may have generated by the previous uses on-Site.

13. The Applicant has estimated the site-generated vehicle trips based on Institute of Transportation Engineers (ITE) trip generation rates for Land Use Codes (LUC) 710 (General Office Building), 760 (Research and Development Center) and 822 (Strip Retail Plaza (<40,000 sf)) and applied a modest credit for internal capture of trips shared between uses on the site. In addition, the Applicant has assumed that 25 to 40 percent of the retail trips will be from pass-by trips (vehicles already on the adjacent roadway network passing by the site while traveling to another destination). GPI concurs with this methodology.

Ref: 15306.00 June 29, 2022 Page 12

Applicant Response: No response needed

14. Although the Applicant has proposed a significant Transportation Demand Management (TDM) program, the Applicant has not applied any reduction in vehicle trips generated by the project for the implementation of the TDM program. While GPI agrees that this methodology will result in the most conservative (worst case) estimate of project's impacts on traffic operations through the study area, it should not excuse the Applicant from developing an effective TDM program or identify target mode share goals for the proposed TDM program. The Applicant should estimate the potential mode share and vehicle trip reduction anticipated from implementing the proposed TDM program and identify mode share goals to be monitored and evaluated as part of the Post-Occupancy Monitoring Program.

<u>Applicant Response:</u> The Proponent is strongly committed to implementing the TDM measures to the greatest extend feasible to reduce single-occupancy vehicle travel to and from the Site. The Proponent will use the 128 Business Council as a resource when implementing the TDM measures as the 128 Business Council has many years of experience with TDM plans as a Transportation Management Association.

As presented in the TIA, the trip generation estimates were developed assuming 100-percent of the Site-generated traffic would use private vehicles to access the Site. This was a conservative analysis used to identify the "worst-case" scenario of vehicular impacts that the Site could generate. With the proposed TDM program, the investment in pedestrian and bicycle infrastructure, and the dedicated shuttle between the Site and nearby transit stations, the Proponent is committed to ensuring that the percentage of Site-generated traffic using private vehicles is measurably less than 100-percent. With the future of hybrid work schedules and employees working from home, it is also likely that not all employees who work on-Site will commute to the workplace five days a week.

Data from the US Census Bureau was reviewed to determine the actual mode share characteristics for employees who commute to workplaces in the Town of Needham. Based on the data, approximately 95-percent of all employees who commute to workplaces in the Town of Needham do so via private automobile while two percent use public transit and three percent walk or bike. With the strong TDM program and mitigation measures, the percentage of employees that take alternative forms of transportation is anticipated to be higher than that generated by other workplaces within the Town of Needham. The existing mode share data is included in the Attachments to this memorandum.

The success of the TDM plan will be measured based on the results of the transportation monitoring program. The Proponent will use the results of the transportation monitoring program to review the current TDM program and decide if any tweaks are necessary to further engage the employees and patrons of the Site to encourage the use of walking/biking, carpooling, and public transportation.

Transportation Demand Management (TDM) Measures

- 15. The Applicant has proposed the following transit-related measures as part of the TDM program:
 - Explore the feasibility of providing shuttle service connectivity to nearby public transportation nodes (commuter rail and Green Line);

Ref: 15306.00 June 29, 2022 Page 13

- Require tenants to provide a 50 percent transit pass subsidy for their employees;
- Carpool assistance and incentives;
- Emergency ride home;
- Display in the Main Lobby transportation-related information for tenants' employees and visitors; and
- Promotional efforts.

The Applicant should provide additional information on how carpool assistance and emergency ride home services will be provided, as well as what incentive program may be implemented. In addition to providing shuttle service to nearby commuter rail and Green Line services, the Applicant should explore the possibility of extending bus service to the site.

Applicant Response: The Proponent is committed to having an on-Site Employee Transportation Coordinator. Part of the job of the Employee Transportation Coordinator may be to assist in helping employees coordinate carpools, such as by creating a database of employees interested in carpooling and linking them with other employees interested in carpooling who live in the same direction. The Employee Transportation Coordinator may also provide incentives such as raffles with small prizes and other events to promote carpooling and commuting via transit, walking, and biking.

In addition, the Proponent is committed to joining the 128 Business Council, which serves as the Transportation Management Association (TMA) for the local area. As members of the 128 Business Council, employees on-Site will be able to take advantage of their emergency ride home program. The program provides commuters who use alternative transportation with a guaranteed ride home in the event of an emergency. To use this program, employees can be reimbursed for a taxi or ride-share ride for trips within 10 miles of the Site or be reimbursed for the cost of a rental car for trips more than 10 miles away from the Site. Details of the 128 Business Council's emergency ride home program can be found at the link below:

https://128bc.org/resources/emergency-ride-home/

As noted in the traffic study, the nearest MBTA bus stop to the Site is nearly a half-mile away on Webster Street along MBTA Route 59. The MBTA in May 2022 released a draft plan of the Bus Network Redesign which proposes to keep Route 59 on its existing alignment through Needham while eliminating variations of Route 59 through Newton to simplify operations. If Route 59 was revised to directly serve the Site, it would no longer provide access to the residential areas along Webster Street and Central Avenue. To maintain transit service to the residential areas along Webster Street and Central Avenue while also providing transit connection to the Site, the Proponent is committed to providing a dedicated shuttle service that will run between the Site and nearby public transportation stations, such as the commuter rail at Needham Heights and the Green Line D Branch at Newton Highlands. This will provide a direct connection between the Site and the public transportation network throughout greater Boston without negatively impacting the existing MBTA bus service through Needham.

Ref: 15306.00 June 29, 2022 Page 14

Bicycle Accommodations

16. Section 2.3.4.1 of the ENF notes that a total of 89 bicycle parking spaces will be provided indoors and outdoors, while the TIAS describes a total of only 70 bicycle parking spaces proposed on the site. The Applicant should clarify this discrepancy.

Applicant Response: The number of bicycle parking spaces to be provided on-Site has increased since the submittal of the TIA. As currently proposed, the Project will provide covered and secured bicycle parking spaces within its buildings and in outdoor spaces, where public bicycle racks will be installed near building entrances for Project visitors. Specifically, the Project will include up to 104 indoor and secure bicycle parking spaces on-Site for employees and up to 50 outdoor bicycle parking spaces on public bicycle racks for visitors and customers for a total of up to 154 bicycle parking spaces on-Site.

17. No description has been provided within the ENF or TIAS on how many bicycle parking spaces will be indoors and how many will be outdoors. The studies also do not contain any assessment of the potential bicycle parking demand that could be generated and the adequacy of the number of bicycle parking spaces provided to accommodate this demand. The Applicant should provide an evaluation of the potential bicycle parking demand to ensure that adequate bicycle parking is provided to encourage use of bicycle as a means of traveling to/from the site.

<u>Applicant Response:</u> The Project will include up to 104 indoor and secure bicycle parking spaces on-Site for employees and up to 50 outdoor bicycle parking spaces on public bicycle racks for visitors and customers to the Site.

As presented in the TIA, the trip generation estimates were developed assuming 100-percent of the Site-generated traffic would use private vehicles to access the Site. This was a conservative analysis used to identify the "worst-case" scenario of vehicular impacts that the Site could generate. The actual percentage of employees commuting by private vehicle will be less than 100-percent.

To determine if the proposed bicycle parking supply is sufficient for the anticipated bicycle demand, data from the US Census Bureau was reviewed to determine the existing mode share characteristics for employees who commute to workplaces in the Town of Needham. Based on the data, approximately one percent of all existing employees who commute to workplaces in the Town of Needham do so by bicycle (the existing mode share data is included in the Attachments). With the proposed TDM program and the investment in pedestrian and bicycle infrastructure, the percentage of employees arriving and departing by alternative modes of transportation, including by bicycle, is expected to exceed the rates for existing workplaces in the Town of Needham. For the purposes of determining if the proposed bicycle parking supply is sufficient for the anticipated bicycle demand, a conservative five-percent bicycle mode share has been assumed.

Table 4 summarizes the proposed bicycle parking demand for the Project Site based on the trip generation presented in the TIA.

Ref: 15306.00 June 29, 2022 Page 15

Table 4 Proposed Bicycle Parking Spaces

				Proposed Bicycle Parking			
Period	Vehicle Trips ^a	Bike Mode Share Estimate ^b	Bike Trip Estimate ^c	Long-term Spaces	Short-term Spaces	Total Bike Spaces	
Weekday Dail	y						
Enter	2,536	5% enter	127	104	50	154	
Exit	2,469	5% exit	124				

- a Total Net New Vehicle Trips expected to be generated by the Project, as presented in Table 2-5 of the TIA.
- b Conservative bicycle mode share of five percent based on area projects.
- c Estimated daily bike trips generated by the Project assuming a five-percent bike share.

Using a conservative estimated bicycle trip rate, a maximum of 127 entering bicycle trips would be expected to be generated by the Project over the course of an average weekday. As shown in Table 4, up to 154 bicycle parking spaces will be provided on-Site. Since the total number of bicycle parking spaces on-Site will exceed the maximum daily bicycle trips generated by the Site, the bicycle parking supply is expected to be sufficient for the anticipated bicycle parking demand. This is true without considering that not all bicyclists will be on-Site at the same time and thus not all bicyclists will need their own dedicated bicycle parking spaces.

In addition, the Proponent will monitor the actual level of bicycle demand on-Site once the Project opens. If it is determined that the bicycle mode share exceeds the five percent assumed in the bicycle parking demand and additional bicycle parking is required, the Proponent will install additional bicycle parking spaces on-Site.

Proposed Mitigation

18. The TIAS describes geometric improvements that are proposed at the intersection of Highland Avenue / Gould Street / Hunting Road as mitigation for the project, which are shown graphically in Figure 16. The widening of the roadway that will be required to accommodate the additional lanes at this location will also likely require reconstruction of the traffic signal at this intersection to accommodate new signal indications and mast arms, as well as vehicle detection and pedestrian signal equipment. No mention of the signal upgrades was provided in the TIAS and no signal improvements are shown in Figure 16.

<u>Applicant Response:</u> The widening of Gould Street will likely require the reconstruction of the traffic signal at the intersection of Highland Avenue at Gould Street/Hunting Road to accommodate new signal indications, mast arms, vehicle detection, and pedestrian signal equipment. The Proponent will coordinate with MassDOT and the Town of Needham on this additional construction work as the off-Site mitigation design progresses.

19. Figure 16 of the TIAS provides a graphic depiction of the roadway geometry proposed at the intersection of Highland Avenue / Gould Street / Hunting Road and along Gould Street fronting the site. The Figure does not include the Highland Avenue eastbound or Hunting Road northbound approaches to the intersection, so it is difficult to identify what, if any, improvements are proposed on those approaches. However, Figure 1.4 of the ENF also provides a similar graphic that includes all approaches to the intersection. While the geometry on the majority of the approaches appears consistent with the conceptual improvement sketches prepared as part of the former rezoning effort, the Hunting Road northbound approach to Highland Avenue and the

Ref: 15306.00 June 29, 2022 Page 16

receiving approach on Gould Street are inconsistent with the rezoning plans. The analysis and plans prepared as part of the rezone indicated that two through lanes would be required on Hunting Road with two receiving lanes on Gould Street to accommodate the traffic generated by the project. The capacity and queue analysis summarized in Table 15 of the TIAS indicates that even with the mitigation measures proposed by the Applicant, the Hunting Road northbound movement will operate over capacity at level-of-service (LOS) F during the weekday AM and PM peak hours under 2029 Build with Mitigation conditions. The Highland Avenue eastbound left-turn movement will also operate at LOS F during the weekday AM peak hour. Therefore, the Applicant should consider the feasibility of providing an additional northbound lane on Hunting Road to improve the capacity and operations of this intersection.

Applicant Response: The conceptual improvements proposed as part of the rezoning of the Site were reviewed when developing the mitigation for the Project. The traffic study submitted by GPI for the rezoning of the Site included a conceptual improvement plan at the intersection of Highland Avenue at Gould Street/Hunting Road that included two lanes on the Hunting Road northbound approach, a shared left-turn/through lane and a right-turn lane, and one receiving lane on Gould Street north of the intersection. This geometry matches what is currently proposed by the Proponent. As noted in the ENF, the only difference between the previous concept plan and the plan proposed in the TIA is the exclusion of a dedicated right-turn lane on the Highland Avenue westbound approach, as adding a right-turn lane would introduce a weaving conflict between vehicles on Highland Avenue westbound and vehicles on the I-95 southbound off-ramp that would cause safety concerns. A figure of the concept plan from the GPI traffic study supporting the rezoning of the Site is included in the Attachments of this memorandum for reference.

While expanding the Hunting Road cross-section would provide additional capacity at the intersection, an additional northbound lane cannot be implemented without taking significant property outside of the right-of-way. This would have a major impact on the property at 580 Highland Avenue and could require the razing of the existing house on that property. Therefore, to limit the right-of-way impacts, no expansion of Hunting Road is proposed.

To improve operations on the Hunting Road approach, the proposed signal cycle lengths and/or phase splits during the weekday morning and weekday evening peak hours were further reviewed and adjusted from what was proposed in the previously submitted traffic study. Since the new signalized intersection of Gould Street at the Site driveway is proposed to be coordinated with the intersection of Highland Avenue at Gould Street/Hunting Road, timing adjustments and operation changes at one intersection will also impact operations at the second intersection.

As noted previously, based on feedback from the community and from the Town of Needham, the Proponent has revised the design for the proposed improvements on Gould Street and developed two additional concept plans. The new concept plans both includes sidewalk-level bicycle facilities to provide a family-friendly bicycle accommodation and eliminates the dedicated southbound right-turn lane from Gould Street to Highland Avenue and the dedicated northbound right-turn lane from Gould Street to TV Place to reduce the amount of pavement. The removal of the dedicated southbound right-turn lane also has the added benefit of shortening the pedestrian crossing. The wider Gould Street cross-section was proposed in the 2020 traffic study to support the rezoning of the site based on the "worst-case" scenario for the full buildout of the site and the adjacent Channel 5 property, which included up to 130,000 SF of retail space. As the actual

Ref: 15306.00 June 29, 2022 Page 17

Project will generate fewer trips than what was evaluated when the cross-section was designed, Gould Street no longer needs to be as expansive to accommodate the Site-generated traffic.

Table 5 summarizes the intersection capacity analyses at the intersections of Highland Avenue at Gould Street/Hunting Road and Gould Street at Site driveway during the weekday morning and weekday evening peak hours with the revised southbound geometry and the revised signal timings in place. The intersection capacity worksheets are included in the Attachments to this memorandum. It should be noted that the elimination of the Gould Street northbound right-turn lane onto TV Place is not expected to impact operations as the northbound approach is under free-flow conditions.

Ref: 15306.00 June 29, 2022 Page 18

Table 5 Intersection Capacity Analysis Summary – Highland Avenue at Gould Street/Hunting Road

	2029 No-Build Condition						2029 Build without Mitigation					2029 Build with Mitigation				
Location / Movement	v/c a	Del ^b	LOS c	50 Q ^d	95 Q ^e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q	
Highland Assessed & Castle	I Camana a	مستدا المست	in a Dan	اء												
Highland Avenue at Gould	Street	and Hunt	ing Koa	ıa												
Weekday Morning			_					_								
Highland Ave EB L	1.04	>120	F	~93	#234	>1.20	>120	F	~190	#353	0.96	115.7	F	153	#330	
Highland Ave EB T/R	0.86	40.2	D	364	#512	0.79	36.6	D	364	#512	0.66	30.2	C	363	503	
Highland Ave WB L	0.58	58.6	Е	36	83	0.61	65.3	E	38	83	0.42	61.4	E	42	83	
Highland Ave WB T/R	0.94	52.1	D	362	#545	1.15	117.8	F	~616	#841	0.97	54.3	D	587	#797	
Hunting Rd NB L/T	0.96	89.0	F	206	#434	1.13	>120	F	~263	#480	0.96	96.8	F	265	#433	
Hunting Rd NB R	0.48	39.8	D	48	102	0.51	44.0	D	52	102	0.53	46.1	D	93	136	
Gould St SB L	0.82	64.8	E	145	#281	0.91	84.5	F	182	#347	0.70	71.7	E	136	180	
Gould St SB L/T/R	0.78	59.4	E	137	#264	0.88	77.3	E	175	#335	0.57	72.7	E	107	166	
Overall	0.98	55.1	E	-	-	1.20	100.2	F	-	-	0.95	55.5	Е	-	-	
Weekday Evening																
Highland Ave EB L	>1.20	>120	F	19	57	>1.20	>120	F	27	72	0.60	58.2	Е	24	57	
Highland Ave EB T/R	0.81	42.3	D	287	440	0.81	42.4	D	290	442	0.74	32.8	С	252	#373	
Highland Ave WB L	0.86	83.3	F	100	194	0.87	84.5	F	101	196	0.78	61.6	Е	89	#182	
Highland Ave WB T/R	1.00	61.7	Е	~535	#774	1.07	84.0	F	~599	#861	1.02	61.3	Е	~527	#702	
Hunting Rd NB L/T	0.56	51.4	D	66	127	0.58	52.2	D	70	134	0.73	61.0	Е	65	#126	
Hunting Rd NB R	0.10	35.7	D	4	24	0.10	35.7	D	4	24	0.07	34.2	C	0	5	
Gould St SB L	0.91	61.1	Е	295	#574	>1.20	>120	F	~681	#1051	0.97	61.6	Е	310	#376	
Gould St SB L/T/R	0.88	56.9	Е	284	#554	>1.20	>120	F	~653	#1022	0.76	45.5	D	228	#239	
Overall	1.03	59.5	Е	-	-	>1.20	>120	F	-	-	1.05	52.9	D	-	-	
Gould Street at Wingate D	rivoway	/ Project	· Cito Di	ivoway												
	riveway	/ Troject	. Site Di	iveway												
Weekday Morning											0.01	64.0	_	0	0	
Wingate Dwy EB L/T/R											0.01	61.9	E	0	0	
Site Dwy WB L											0.50	65.0	E	46	90	
Site Dwy WB L/T/R											0.29	62.1	E	25	68	
Gould St NB L/T				d under 2					zed unde		0.57	5.0	A	153	m273	
Gould St NB R	Build	d Conditio	ons with	out Mitig	ation	Build	Conditio	ons with	nout Miti	gation	0.31	4.0	Α	22	m78	
Gould St SB L											0.08	3.1	Α	3	24	
Gould St SB T/R											0.15	3.0	Α	20	88	
Overall											0.54	7.8	Α			
Weekday Evening																
Wingate Dwy EB L/T/R											0.03	43.4	D	0	12	
Site Dwy WB L											0.75	44.2	D	174	187	
Site Dwy WB L/T/R											0.70	41.6	D	163	176	
Gould St NB L/T	Intersection unsignalized under 2029 No Intersection								itersection unsignalized under 2029					56	m252	
Gould St NB R	Build Conditions without Mitigation Build Conditions without Mitigation										0.07	13.2	В	1	m30	
Gould St SB L										_	0.03	8.8	Α	4	21	
Gould St SB T/R											0.37	11.4	В	124	270	
Overall											0.44	21.8	С			

- a Volume to capacity ratio.
- b Average total delay, in seconds per vehicle.
- c Level-of-service.
- d 50th percentile queue, in feet.
- e 95th percentile queue, in feet.
- # 95th percentile volume exceeds capacity, queue may be longer.
- m Volume for 95th percentile queue is metered by upstream signal.

Ref: 15306.00 June 29, 2022 Page 19

As shown in the table above, the southbound shared through/right-turn lane is expected to operate at acceptable levels of service without providing dedicated through and right-turn lanes and queues are not expected to spill back to the upstream intersection at the Site driveway. The shared lane is expected to operate at LOS E during the weekday morning peak hour and LOS D during the weekday evening peak hour with volume-to-capacity ratios of less than 0.80 during both peak hours.

During the weekday morning peak hour, while the Hunting Road northbound left-turn/through movements and the Highland Avenue eastbound left-turn movements are still expected to operate at LOS F under the 2029 Build Conditions with the proposed mitigation, the amount of delay and volume-to-capacity ratios are expected to be better than or similar to operations under the 2029 No Build Conditions and the overall intersection delay is expected to be nearly the same as under the 2029 No Build Conditions. During the weekday evening peak hour, the Hunting Road northbound left-turn/through movement is expected to operate at LOS E with the proposed mitigation, which is similar to operations for movements on the other approaches. The intersection of Gould Street at the Site driveway is expected to operate at overall LOS C or better under the 2029 Build Conditions with mitigation.

As noted in the traffic study, construction is currently ongoing on the MassDOT Needham-Newton corridor project along Highland Avenue to improve safety and pedestrian/bicycle accommodations. The project includes geometric and signal improvements along the corridor and new sidewalks and separated bicycle lanes. The roadway redesign project has been in the works for many years and has gone through several rounds of public comments to reach the current construction plan. It should be noted that the MassDOT reconstruction project does not include a significant enhancement of capacity at the intersections along Highland Avenue, as the design prioritizes safety and active transportation enhancements over additional vehicle capacity and several movements are expected to operate at LOS F with the roadway project in place. Since the 2029 No Build Conditions reflect the completed MassDOT roadway design at the intersection of Highland Avenue at Gould Street/Hunting Road, the proposed mitigation at the intersection has been designed to accommodate the additional Site-generated traffic while operating similarly to the 2029 No Build Conditions, which reflects the MassDOT vision of the corridor.

20. Figure 15 of the TIAS depicts improvements to be constructed at the Central Avenue / Gould Street intersection as mitigation for the project, which include restriping of Central Avenue to provide a westbound left-turn lane and installation of a fully-actuated traffic signal. The proposed signal equipment is not depicted on the plans. The Applicant should obtain survey information at this location to verify whether the proposed improvements can be constructed within the publicly-available right-of-way and whether any easements will be required for the proposed signal equipment. In addition, the Applicant should perform vehicle turning movement analysis to verify that that the proposed curb radii and STOP line locations will allow emergency vehicles and trucks to safely navigate the intersection without encroaching on opposing traffic flows.

<u>Applicant Response</u>: An updated concept plan has been developed for the proposed improvements at the intersection of Central Avenue at Gould Street and is included in the Attachments to this memorandum. The updated concept plan is based on survey data and includes the proposed location of the signal equipment. As noted on the modified concept plan, a small easement is likely to be required for the installation of a mast arm on the north side of Central Avenue between the driveways for 153 Gould Street and 161 Gould Street. All other signal equipment is proposed to be located within the existing roadway right of-way.

Ref: 15306.00 June 29, 2022 Page 20

The intersection has been designed to accommodate the turning radii of a WB-40 turning from Central Avenue onto Gould Street without encroaching on opposing traffic flows. This is an improvement over existing conditions where the largest vehicles that can make the turning maneuver without encroaching on opposing traffic flow is a SU-30. Larger vehicles will be able to perform turning maneuvers at the intersection but may result in slight encroachment into the opposing travel lane, which is similar to existing turning movements at intersections along Central Avenue and Gould Street.

It should be noted that the proposed improvements at the intersection of Central Avenue at Gould Street are still in the early design phases and the Proponent will coordinate with the Town of Needham on the specific details of the final design.

Transportation Operations Analysis

21. According to Table 9, the Highland Avenue southbound approach to West Street will operate over capacity with long delays during the weekday PM peak hour under 2029 Build conditions, with an increase in delay of 22 seconds per vehicle generated by the project. The Applicant has not proposed any measures to mitigate this impact. The Applicant should investigate measures to mitigate this significant impact to operations.

<u>Applicant Response:</u> The Proponent has reviewed the signal timings at the intersection of Highland Avenue at West Street during the weekday evening peak hour and determined that if the following signal timing adjustments were made, operations would improve for the southbound approach without adversely impacting movements on the other approaches:

- > Increase cycle length to 125 seconds
- > Provide the following splits for each movement:
 - 51 seconds for the West Street eastbound/westbound approaches, with a 17 second leading eastbound left-turn phase
 - 54 seconds for the Highland Avenue northbound/southbound approaches
 - 20 seconds for exclusive pedestrian crossings

Table 6 summarizes the intersection capacity analyses at the intersection of Highland Avenue at West Street during the weekday evening peak hour with the revised signal timings in place and the intersection capacity worksheets are included in the Attachments to this memorandum.

Ref: 15306.00 June 29, 2022 Page 21

Table 6 Intersection Capacity Analysis Summary – Highland Avenue at West Street

		2029 N	o-Build	Conditi	on	2029 Build without Mitigation					2029 Build with Mitigation				
Location / Movement	v/c a	Del ^b	LOS c	50 Q ^d	95 Q ^e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q
Highland Avenue at West Str	eet														
Weekday Evening															
West St EB L	0.60	26.2	C	70	154	0.61	26.7	C	73	159	0.64	31.4	C	87	178
West St EB T/R	0.46	20.9	С	123	251	0.46	20.9	С	123	251	0.48	24.9	С	148	281
West St WB L	0.36	30.7	С	35	88	0.36	30.7	С	35	88	0.39	36.2	D	42	98
West St WB T/R	0.66	36.3	D	117	229	0.66	36.3	D	117	229	0.71	44.3	D	140	256
Highland Ave NB L/T/R	0.82	28.1	С	225	#664	0.83	29.0	С	229	#675	0.78	26.2	С	254	#669
Highland Ave SB L/T/R	0.97	50.7	D	320	#889	1.05	72.0	Е	369	#978	0.98	53.4	D	408	#994
Overall	0.81	35.3	D	-	-	0.85	43.3	D	-	-	0.84	38.4	D	-	-

- a Volume to capacity ratio.
- b Average total delay, in seconds per vehicle.
- c Level-of-service.
- d 50th percentile queue, in feet.
- e 95th percentile queue, in feet.
- # 95th percentile volume exceeds capacity, queue may be longer.

As shown in the table above, modifying the signal timings at this location would reduce the delay for the Highland Avenue southbound movements from 72 seconds to 53 seconds, which nearly offsets the increase in delay caused by the additional Site-generated traffic through the intersection. With the modified signal timings, the overall intersection delay of 38 seconds under the 2029 Build Conditions would be similar to the overall intersection delay of 35 seconds under the 2029 No Build Conditions without the Project in place. In addition, the signal timing adjustments results in volume-to-capacity ratios of less than 1.00 for all movements.

22. The Highland Avenue eastbound through/right-turn movement at the intersection with Webster Street will operate over capacity during the weekday AM peak hour under 2029 Build conditions, with an increase in delay of 26 seconds per vehicle generated by the project. The Applicant has not proposed any measures to mitigate this impact. The Applicant should investigate measures to mitigate this significant impact to operations.

<u>Applicant Response:</u> The Proponent has reviewed the signal timings at the intersection of Highland Avenue at Webster Street during the weekday morning peak hour and determined that if the following signal timing adjustments were made, operations would improve for the eastbound approach without adversely impacting movements on the other approaches:

- > Increase cycle length to 130 seconds
- > Provide the following splits for each movement:
 - 65 seconds for the Highland Avenue eastbound/westbound approaches, with a 16 second leading westbound left-turn phase
 - 28 seconds for exclusive pedestrian crossings
 - 37 seconds for the Webster Avenue northbound/southbound approaches

Ref: 15306.00 June 29, 2022 Page 22

Table 7 summarizes the intersection capacity analyses at the intersection of Highland Avenue at Webster Street during the weekday morning peak hour with the revised signal timings in place and the intersection capacity worksheets are included in the Attachments to this memorandum.

Table 7 Intersection Capacity Analysis Summary – Highland Avenue at Webster Street

	20	2029 Build without Mitigation					2029 Build with Mitigation								
Location / Movement	v/c a	Del ^b	LOS °	50 Q ^d	95 Q e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q
Highland Ave at Webster S	Street														
Weekday Morning															
Highland Ave EB L	0.14	22.7	C	13	50	0.14	22.7	C	13	50	0.12	22.1	C	14	52
Highland Ave EB T/R	1.00	67.6	Е	290	#745	1.08	93.4	F	330	#830	0.92	49.1	D	366	#861
Highland Ave WB L	0.55	20.9	С	32	109	0.55	21.5	С	32	109	0.63	27.0	С	39	#152
Highland Ave WB T/R	0.64	18.5	В	180	473	0.64	18.6	В	182	480	0.61	19.1	В	223	531
Webster St NB L/T	0.90	56.0	Е	189	#471	0.90	56.0	Е	189	#471	0.86	54.6	D	223	#474
Webster St NB R	0.40	24.4	С	25	122	0.40	24.4	С	25	122	0.47	30.2	С	51	177
Webster St SB L/T/R	>1.20	35.0	D	69	#160	>1.20	35.0	D	69	#160	>1.20	39.1	D	82	164
Overall	0.91	39.2	D	-	-	0.95	46.3	D	-	-	0.87	36.8	D	-	-

- a Volume to capacity ratio.
- b Average total delay, in seconds per vehicle.
- c Level-of-service.
- d 50th percentile queue, in feet.
- e 95th percentile queue, in feet.
- # 95th percentile volume exceeds capacity, queue may be longer.

As shown in the table above, modifying the signal timings at this location would reduce the delay for the Highland Avenue eastbound through/right movements from 93 seconds to 49 seconds, which more than offsets the increase in delay caused by the additional Site-generated traffic through the intersection. With the modified signal timings, the overall intersection delay of 37 seconds under the 2029 Build Conditions would be lower than the overall intersection delay of 39 seconds under the 2029 No Build Conditions without the Project in place.

23. Although not heavily impacted by project-generated traffic, the Highland Avenue westbound left/through movement at the intersection with 1st Avenue will be well over capacity during the weekday PM peak hour under both 2029 No-Build and Build conditions. GPI recommends the Applicant consider measures to reduce delay and improve operations at this location.

<u>Applicant Response:</u> The Proponent has reviewed the signal timings at the intersection of Highland Avenue at 1st Avenue during the weekday evening peak hour and determined that if the following signal timing adjustments were made, operations would improve for the westbound approach without adversely impacting movements on the other approaches:

Ref: 15306.00 June 29, 2022 Page 23

- > Increase cycle length to 115 seconds
- > Provide the following splits for each movement:
 - 50 seconds for the Highland Avenue eastbound/westbound approaches, with 3 second leading pedestrian intervals
 - 29 seconds for the southbound driveway approach and the crosswalk across Highland Avenue
 - 36 seconds for the 1st Avenue northbound approach

Table 8 summarizes the intersection capacity analyses at the intersection of Highland Avenue at 1st Avenue during the weekday evening peak hour with the revised signal timings in place and the intersection capacity worksheets are included in the Attachments to this memorandum.

Table 8 Intersection Capacity Analysis Summary – Highland Avenue at 1st Avenue

2029 No-Build Condition						202	9 Build v	Mitigat	ion	2029 Build with Mitigation					
Location / Movement	v/c a	Del ^b	LOS c	50 Q ^d	95 Q ^e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q
Highland Avenue at 1st Avenue															
Weekday Evening															
Highland Ave EB L/T	0.65	23.6	C	192	#418	0.68	24.2	C	203	#444	0.58	22.0	C	231	427
Highland Ave EB R	0.19	2.4	Α	0	12	0.19	2.4	Α	0	12	0.19	2.7	Α	0	24
Highland Ave WB L/T	>1.20	>120	F	~626	#975	>1.20	>120	F	~630	#980	1.08	76.8	Е	~651	#1090
1 st Ave NB L	0.69	27.3	С	222	296	0.69	27.3	С	222	296	0.82	46.4	D	291	#532
1st Ave NB L/T/R	0.55	23.9	С	144	216	0.55	23.9	С	144	216	0.68	37.6	D	207	#396
Driveway SB L/T/R	0.10	44.5	D	2	15	0.10	44.5	D	2	15	0.06	52.1	D	3	13
Overall	0.99	81.5	F	-	-	0.99	82.0	F	-	-	0.95	50.1	D	-	-

- a Volume to capacity ratio.
- b Average total delay, in seconds per vehicle.
- c Level-of-service.
- d 50th percentile queue, in feet.
- e 95th percentile queue, in feet.
- ~ Volume exceeds capacity, queue is theoretically infinite.
- # 95th percentile volume exceeds capacity, queue may be longer.

As shown in the table above, modifying the signal timings at this location would reduce the delay for the Highland Avenue eastbound through/right movements from over 120 seconds to 77 seconds, which is better than the operations under the 2029 No Build Conditions without the Project in place. The overall intersection level of service would improve from LOS F to LOS D with the signal timing adjustments.

24. Similarly, the Hunting Road northbound approach to Kendrick Street will be well over capacity during the weekday AM peak hour under 2029 No-Build and Build conditions. GPI recommends the Applicant consider options for reducing delay and improving operations at this location.

<u>Applicant Response</u>: The Proponent has reviewed the signal timings at the intersection of Hunting Road at Kendrick Street during the weekday morning peak hour and determined that if the following signal timing adjustments were made, operations would improve for the northbound approach without adversely impacting movements on the other approaches:

Ref: 15306.00 June 29, 2022 Page 24

- Maintain cycle length of 90 seconds
- > Provide the following splits for each movement:
 - 29 seconds for the Kendrick Street eastbound/westbound approaches, with a 12 second leading westbound left-turn phase
 - 37 seconds for the Hunting Road northbound/southbound approaches, with an 11 second lagging southbound left-turn phase
 - 24 seconds for exclusive pedestrian crossings

Table 9 summarizes the intersection capacity analyses at the intersection of Hunting Road at Kendrick Street during the weekday morning peak hour with the revised signal timings in place and the intersection capacity worksheets are included in the Attachments to this memorandum.

Table 9 Intersection Capacity Analysis Summary – Hunting Road at Kendrick Street

		2029 No-Build Condition					2029 Build without Mitigation					2029 Build with Mitigation				
Location / Movement	v/c a	Del ^b	LOS c	50 Q ^d	95 Q ^e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q	
Hunting Road at Kendrid	k Street															
Weekday Morning																
Kendrick St EB L/T/R	0.43	19.5	В	109	#252	0.43	19.6	В	110	#253	0.49	23.5	C	124	#298	
Kendrick St WB L	0.23	11.0	В	20	71	0.23	11.0	В	20	71	0.26	13.6	В	23	77	
Kendrick St WB T/R	0.31	12.4	В	72	213	0.33	12.7	В	78	227	0.37	15.8	В	93	249	
Hunting Rd NB T/R	>1.20	>120	F	~285	#461	>1.20	>120	F	~285	#461	0.93	60.3	Е	219	#386	
Hunting Rd NB R	0.39	0.7	Α	0	0	0.39	0.7	Α	0	0	0.39	0.7	Α	0	0	
Hunting Rd SB L	0.42	38.0	D	32	65	0.45	38.2	D	34	69	0.39	34.1	С	31	63	
Hunting Rd SB T/R	0.14	24.3	С	28	60	0.14	24.3	С	27	60	0.11	20.8	С	24	54	
Overall	0.68	41.7	D	-	-	0.68	42.1	D	-	-	0.67	22.3	С	-	-	

- a Volume to capacity ratio.
- b Average total delay, in seconds per vehicle.
- c Level-of-service.
- d 50th percentile queue, in feet.
- e 95th percentile queue, in feet.
- ~ Volume exceeds capacity, queue is theoretically infinite.
- # 95th percentile volume exceeds capacity, queue may be longer.

As shown in the table above, modifying the signal timings at this location would reduce the delay for the Hunting Road northbound movements from over 120 seconds to 60 seconds, which is better than the operations under the 2029 No Build Conditions without the Project in place. The overall intersection level of service would improve from LOS D to LOS C with the signal timing adjustments.

It should be noted that the traffic signal at this intersection is coordinated with the intersection of Kendrick Street at the I-95 Southbound Ramps to the east, which was not included as a study area intersection in the TIA. It should be confirmed that modifying the splits at the Hunting Road at Kendrick Street intersection will not adversely impact operations at the adjacent signalized intersection before implementing the signal timing adjustments.

25. The Webster Street and Cedar Street approaches to Central Avenue are expected to operate well over capacity with long delays and queues under 2029 No-Build and Build conditions, particularly during the weekday AM peak hour. The Applicant should investigate options for improving the operations of these intersections,

Ref: 15306.00 June 29, 2022 Page 25

including conducting a signal warrant analysis to assess whether a warrant for installation of traffic signal will be met at either of these locations.

Applicant Response: As requested, signal warrants have been conducted at the intersections of Central Avenue at Cedar Street and Central Avenue at Webster Street. The warrants have been conducted for the 2022 Existing Conditions, 2029 No Build Conditions, and 2029 Build Conditions. The warrants are based on peak hour data projected throughout the day based on the hourly distribution of traffic at a nearby MassDOT count station on Highland Avenue. Table 10 presents the results of the signal warrant analyses and the warrant analysis worksheets are included in the Attachments to this memorandum.

Table 10 Traffic Signal Warrants Analysis Summary

Location	Condition	Warrant 1 (8-Hour) Met	Warrant 2 (4-Hour) Met	Warrant 3 (Peak Hour) Met
	2022 Existing	Yes	Yes	No
Central Avenue at Cedar Street	2029 No Build	Yes	Yes	No
	2029 Build	Yes	Yes	Yes
	2022 Existing	Yes	No	No
Central Avenue at Webster Street	2029 No Build	Yes	Yes	No
Webster Street	2029 Build	Yes	Yes	No

Note: Based on 85th-percentile speeds under 40 miles per hour, per posted speed limits on Central Avenue

As shown in the table above, both intersections are warranted by at least one warrant under the 2022 Existing, 2029 No Build, and 2029 Build Conditions. The addition of Site-generated traffic does not trigger an intersection from not having a traffic signal being warranted to warranting a traffic signal.

Since both intersections are warranted under Existing and No Build Conditions and since less than 10-percent of the Project-generated trips are expected to travel through these two intersections, the Proponent is not proposing to signalize either of these intersections. Mitigation for the proposed Project is focused on locations that are expected to carry a higher proportion of Site-generated traffic. However, the signal warrants conducted provide knowledge to the Town of Needham that a signal is warranted to be installed at each of these locations. In addition, the Proponent is proposing to fund the installation of a traffic signal at the intersection of Central Avenue at Gould Street, which is expected to also help operations at these two unsignalized intersections by creating additional gaps in the traffic flow along Central Avenue that will help create additional opportunities for vehicles turning from Cedar Street and Webster Street onto Central Avenue.

26. As noted in Comment 19, even with the proposed mitigation at the Highland Avenue / Gould Street / Hunting Road intersection, some movements will continue operating at LOS F under 2029 Build with Mitigation conditions. Therefore, the Applicant should investigate the feasibility of providing additional capacity at this location to accommodate 2029 Build traffic volumes.

<u>Applicant Response:</u> As noted in the response to Comment 19, additional capacity cannot be provided on the Hunting Road northbound approach without impacting the existing property at 580 Highland Avenue and

Ref: 15306.00 June 29, 2022 Page 26

potentially requiring the razing of the building. However, the signal timings were reviewed to try and improve operations expected to operate at LOS F.

With the proposed mitigation and signal timing adjustments, the intersection will operate similar to the 2029 No Build Conditions. The 2029 No Build Conditions include the completion of the MassDOT Needham-Newton corridor project along Highland Avenue, which does not include a significant enhancement of capacity at the intersections along Highland Avenue, as the design prioritizes safety and active transportation enhancements over additional vehicle capacity. As the roadway redesign project has been in the works for many years and has gone through several rounds of public comments to reach the current construction plan, the design reflects state and local vision of the Highland Avenue corridor, which allows for occasional movements operating at LOS F in the future.

In addition, the design of the Gould Street cross-section has been revised since receiving the Transportation Engineering Peer Review and two additional alternatives have been created. In response to The Town of Needham directing the Proponent to evaluate concepts that would result in less additional pavement, the revised concepts include a three-lane cross section on the Gould Street southbound approach to Highland Avenue; two left-turn lanes and one shared through/right-turn lane. These concepts result in less pavement and a shorter crossing distance for pedestrians while still providing adequate capacity for the existing and future traffic volumes on Gould Street.

Traffic Monitoring Program

27. The TIAS describes a transportation monitoring program that will be conducted post-occupancy to monitor parking occupancy and traffic operations at four of the study area intersections, including the site driveway. The Applicant should also provide monitoring of the effectiveness of the proposed TDM program in encouraging walking/biking, carpooling, and public transportation travel to/from the site.

Applicant Response: The proposed transportation monitoring program will be expanded to include a travel survey of employees and patrons of the Site. The survey will be conducted by the Proponent and will include details on the mode of transportation employees and patrons use to access the Site as well as the effectiveness of the proposed TDM programs. The survey will also ask about hybrid work schedules to determine how frequently employees commute to the Site versus working from home. The results of the survey will be used to review the current TDM program and decide if any tweaks are necessary to further engage the employees and patrons of the Site to encourage the use of walking/biking, carpooling, and public transportation.

- 28. The proposed traffic monitoring program will include the collection of vehicle turning movement counts during the weekday AM and PM peak periods at the following study area intersections:
 - Central Avenue / Gould Street
 - Gould Street / TV Place
 - Gould Street / Project Site Driveway
 - Highland Avenue / Gould Street / Hunting Road

Ref: 15306.00 June 29, 2022 Page 27

GPI agrees that these represent the critical locations that would experience the greatest increase in traffic due to the project. However, should the result of the monitoring study indicate that the actual traffic increase generated by the project exceeds the traffic projections contained within the ENF by ten percent or more, the study area for the monitoring program should be expanded to include additional locations to verify that the project's impacts does not create any operation deficiencies at nearby locations. In addition, the monitoring programs should include a capacity and queue analysis to verify the operations of each of the study area intersections under post-occupancy conditions. The monitoring program should also include the collection of daily traffic volumes on TV Place and the Project Site driveway to verify the daily traffic generated by the project.

Applicant Response: The proposed transportation monitoring program will include simultaneous automatic traffic recorder (ATR) counts at each Site driveway for a continuous 48-hour period during a typical week as well as a capacity and queue analyses to verify the operations at the four intersections listed above under post-occupancy condition. If the results of the monitoring study indicate that the actual traffic increase generated by the Project exceeds the traffic projections contained within the ENF by ten percent or more, the Proponent will work with the Town of Needham and MassDOT to determine if the monitoring program should be expanded, and if so, which additional intersections should be included. The Proponent will also further evaluate the TDM program to see if any tweaks are necessary to further engage the employees and patrons of the Site to encourage the use of walking/biking, carpooling, and public transportation if the actual traffic increase generated by the Project exceeds the traffic projections contained within the ENF by ten percent or more.

Site Access and Circulation

29. Figure 2 of the TIAS provides a site plan depicting the proposed layout and traffic circulation on the site. The plan appears to indicate that a loading/unloading area will be provided at the front of the site between Buildings A and B. This loading area is located in close proximity of the signalized intersection of the main site driveway and Gould Street. Vehicles, particularly trucks, stopped in this area could cause a back up of traffic into Gould Street. The Applicant should consider modifications to the site plan that provide a clear separation of loading/unloading areas and through traffic access to the parking fields to ensure traffic does not back up onto Gould Street. In addition, the Applicant should consider limiting hours of deliveries to the site, as a condition of approval, to avoid deliveries occurring between 7:00 AM and 9:00 AM when a high volume of traffic may be entering the site from Gould Street to access the parking garage.

Applicant Response: The Project Site will include two dedicated loading docks, one in each building. The loading docks will allow trucks to load and unload safely within the loading dock area and will not impede traffic flow on the circulating Site roadway. The area in front of the atrium is intended to be used as a pick-up/drop-off area and will likely be used as well by small deliveries, such as food deliveries and UPS/FedEx. The pick-up/drop-off area will be wide enough so that vehicles idling along the curbside will not impede through movements on the circulating Site roadway. Signage and pavement markings will be provided on-Site indicating the use of this area as a pick-up/drop-off zone and directing employees and visitors to the parking fields.

Ref: 15306.00 June 29, 2022 Page 28

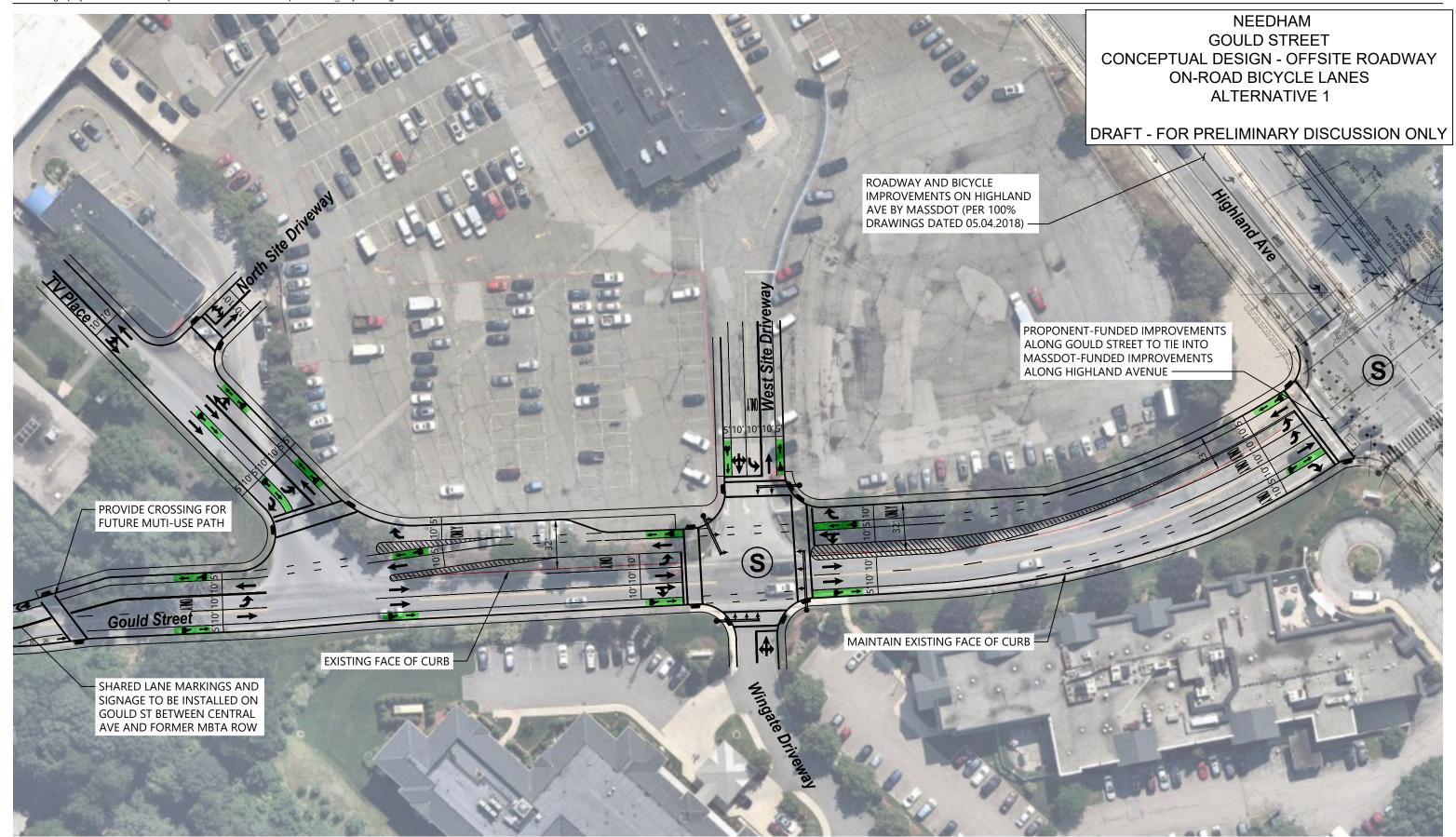
30. A large parking garage is proposed at the northerly end of the site, as well as a small surface parking lot near Gould Street. The Applicant should clearly define who will utilize the surface parking lot. In order to avoid congestion along the main drive aisle through the site, the surface parking lot should be restricted to use by accessible parking spaces, visitors, and brewery patrons (if a brewery is provided) only. All employees of both buildings, including brewery employees, should be directed to park in the parking garage.

<u>Applicant Response:</u> The small surface parking lot is proposed to be used by accessible parking spaces, visitors, and patrons to the retail establishments on Site (the retail tenants for the Site are currently unknown). All employees on-Site (including those for the retail establishment) will be directed to the parking garage and the underground parking area.

- 31. The site plan included in Figure 2 does not depict any pedestrian connections between the proposed surface parking lot and the buildings. The Applicant should modify the site plan to provide fully accessible pedestrian routes between the surface parking lot and both buildings, as well as to the pedestrian loops around the site.
 - <u>Applicant Response:</u> The plan has been revised to include a crosswalk and accessible access from the parking lot to the buildings as well as access to the pedestrian loop.
- 32. The entering travel lane on TV Place is aligned with the sidewalk as it passes by the proposed site driveway. In addition, the exiting lane west of the site driveway is aligned with the entering lane east of the driveway. This has the potential to create a head-on collision between drivers entering and exiting the site as they cross between lanes through the site driveway intersection with TV Place. It also has the potential for entering vehicles on TV Place to drive onto the sidewalk. The Applicant should modify the layout of TV Place to provide better alignment of entering and exiting travel lanes, which may involve additional widening of TV Place to the east of the site driveway and introduction of a raised or striped median island.
 - <u>Applicant Response:</u> The geometry of TV Place has been modified to better align the entering and exiting travel lanes. In addition, a dashed lane line extension pavement marking will be installed for the through movements on TV Place at the Site driveway to better align eastbound and westbound traffic on TV Place. The modified TV Place geometry is included in the revised Gould Street concept plan included in the Attachments to this memorandum.
- 33. The Applicant should perform a vehicle turning movement analysis to verify that emergency vehicles and trucks can safely access and navigate the site. This includes delivery, postal, and trash removal vehicles. The Applicant should provide this turning analysis to the Needham Police and Fire Departments for verification that safe and adequate access is provided.

<u>Applicant Response:</u> Turning diagrams within the site have been studied and are provided in the Attachments to this memorandum. The emergency vehicles as well as delivery vehicles can safely access and navigate the site.

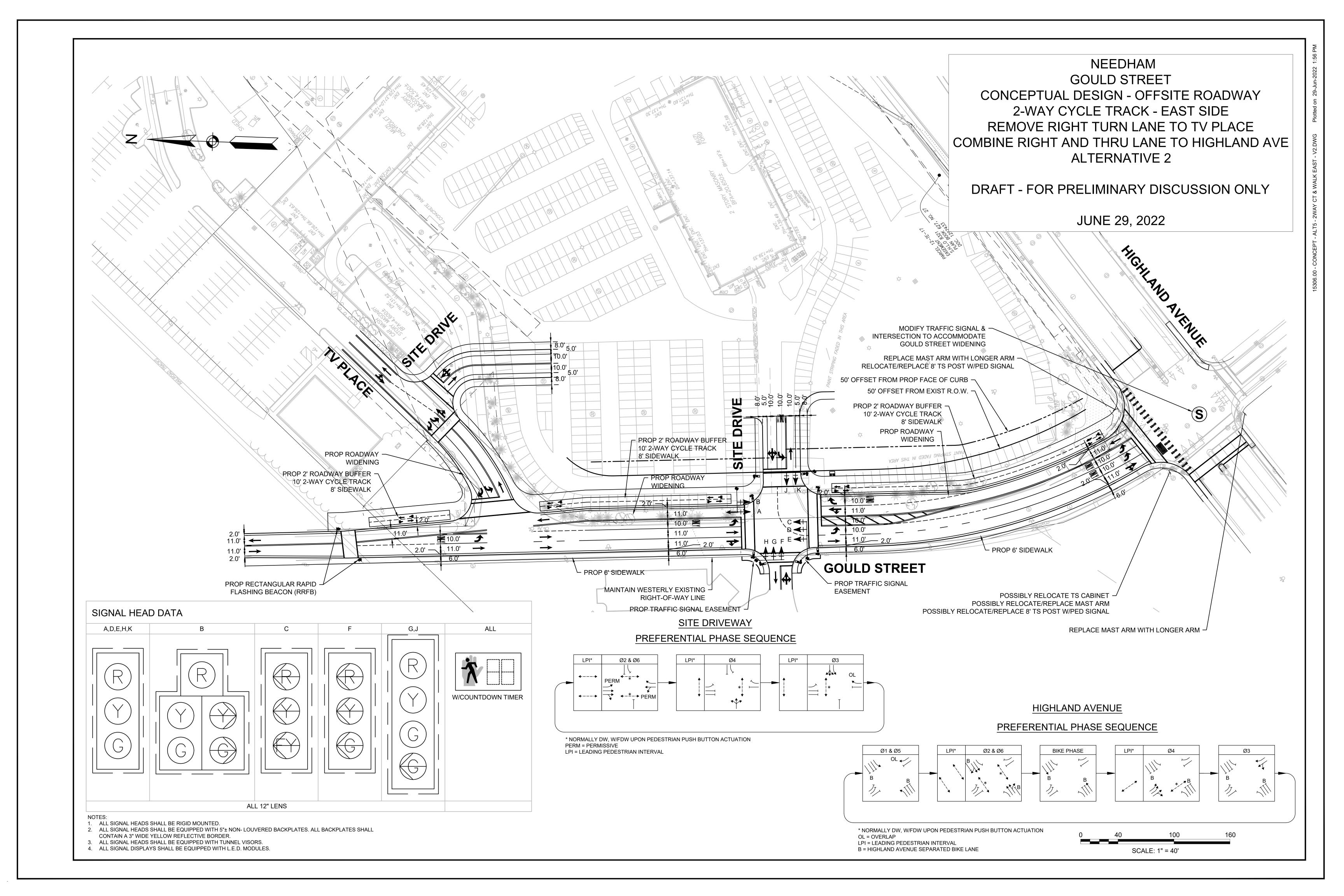
Ref: 15306.00 June 29, 2022 Page 29

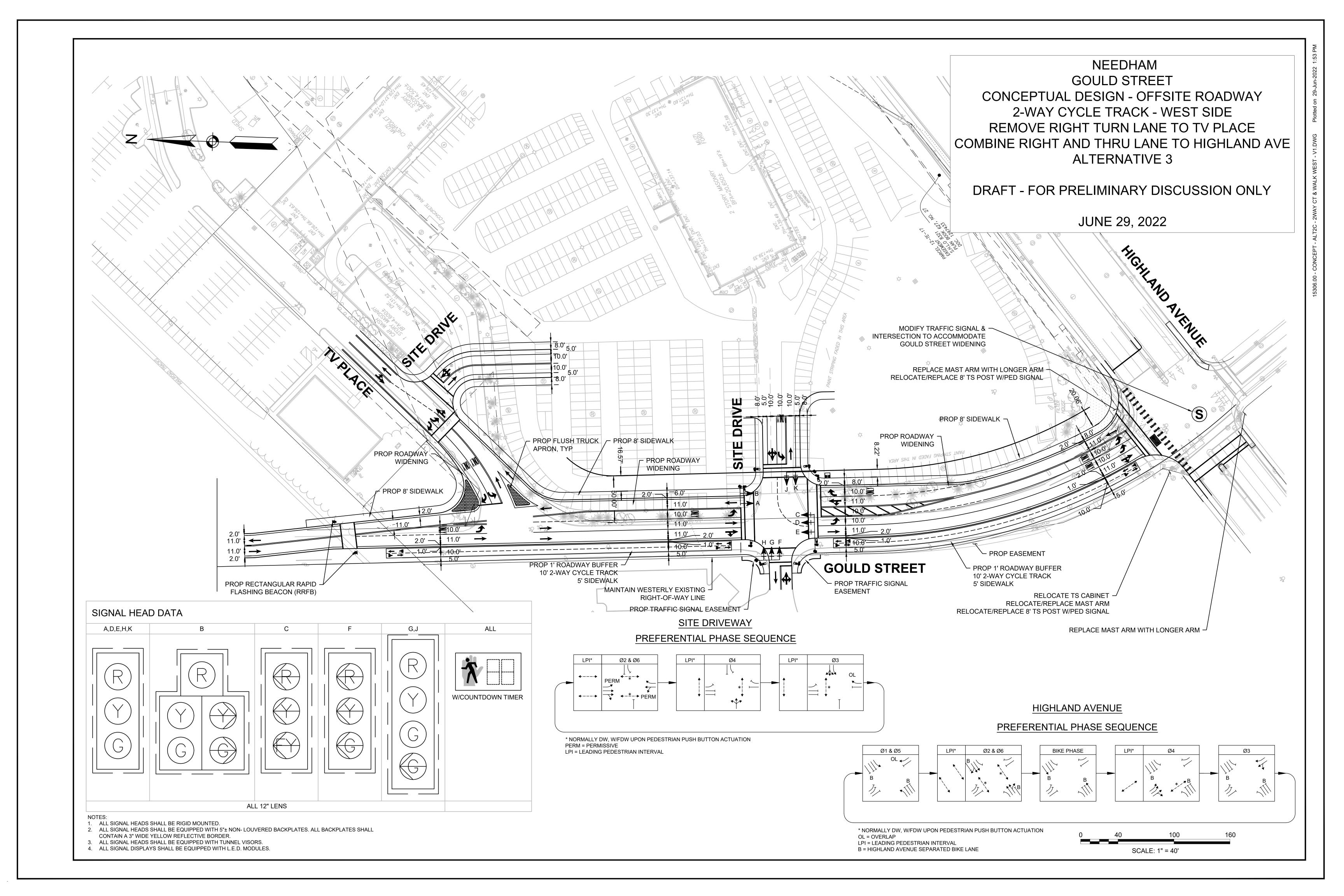

34. Table 15 of the TIAS indicates that queues of nearly 200 feet (eight vehicles) could occur in each lane exiting the site driveway during the weekday PM peak hour. Although the provided plan on Figure 2 is not scaled to be able to accurately measure the available stacking distance, it appears that only 60 feet of stacking distance is proposed in each lane on the site driveway approaching Gould Street before reaching the loading area. Therefore, the queues exiting the site will regularly back up into the loading area and around the corner beyond the driveway to the surface parking lot during the weekday PM peak hour. The Applicant should consider modifications to the site plan to provide additional vehicle stacking exiting the site without interference with the loading area, parking areas, or on-site circulation.

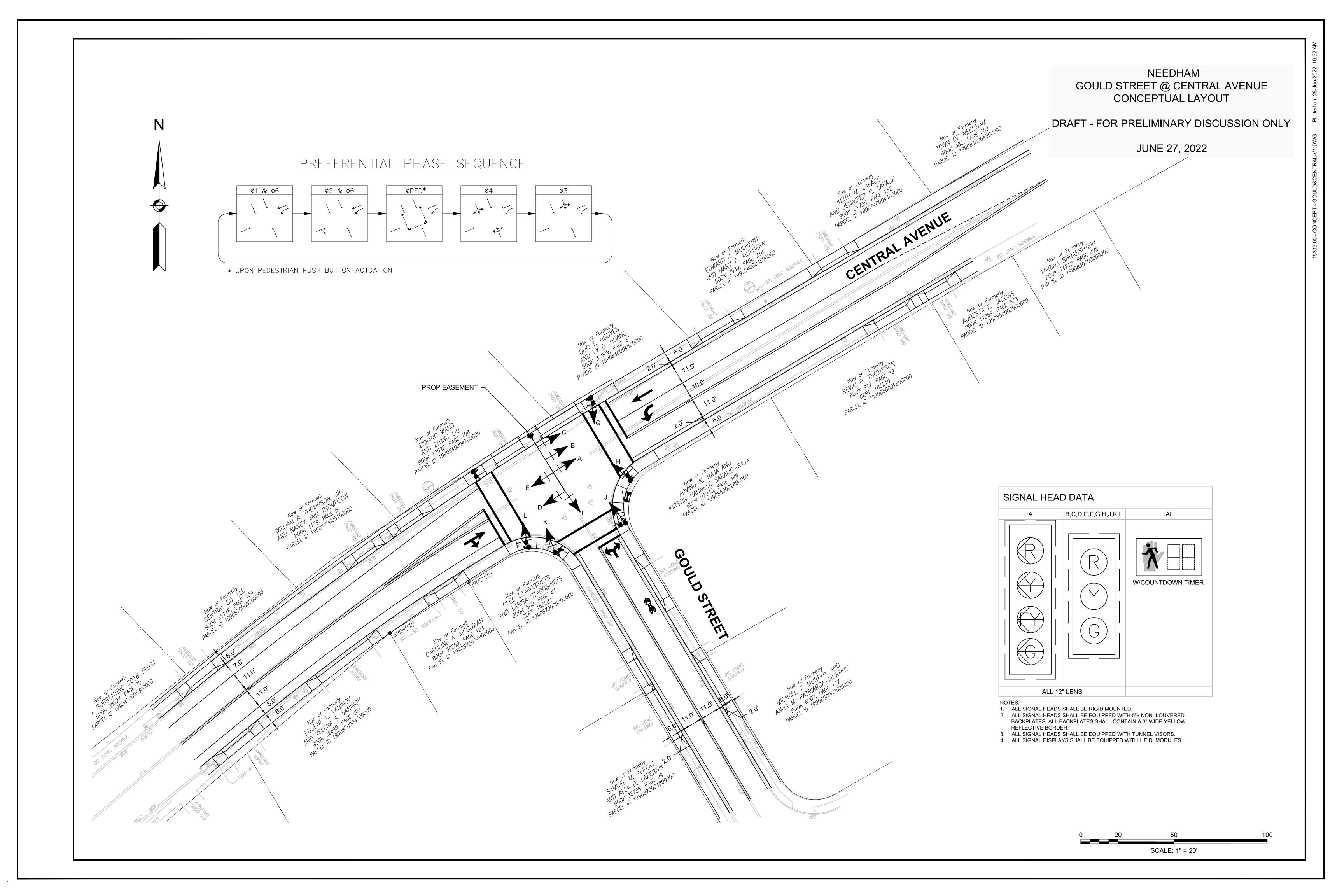
Applicant Response: The Site driveway will be designed to accommodate the queues waiting at the traffic signal at Gould Street. The garage entrance closest to the traffic signal will only provide access to the loading dock, which will be designed so that loading and unloading vehicles will not block the circulating Site roadway. The development is not expected to receive many deliveries during the weekday evening peak hour, but if a delivery truck needs to leave the loading dock and the queue at the signal extends past the loading dock, the delivery truck will be able to turn right onto the circulating Site roadway and exit the Site via TV Place. The entrances to the underground parking area and the free-standing parking garage are around the corner and more than 200 feet away from the signal, providing sufficient room for vehicles to queue without spilling back into the main parking areas. While a queue of 200 feet may extend past the pick-up/drop-off area, that should not be an operational issue as the pick-up/drop-off area will be located on the other side of the circulating Site roadway. Drivers using the pick-up/drop-off area are expected to enter the Site at the signalized driveway and exit the Site at TV Place, traveling in a counterclockwise direction.

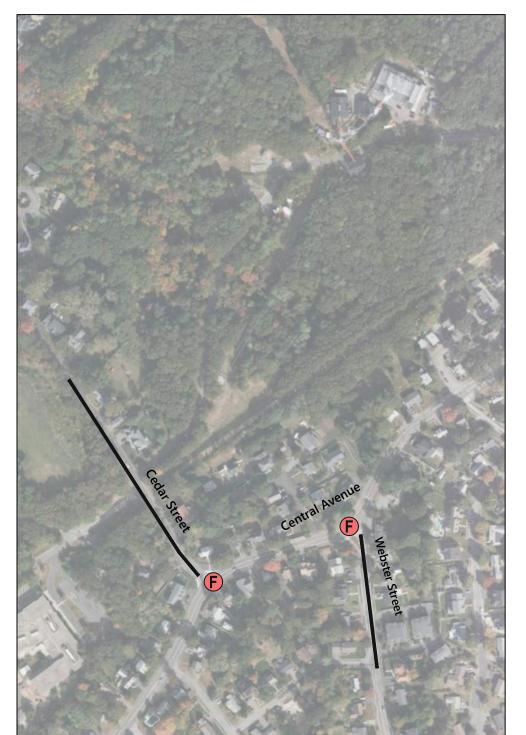
Attachments

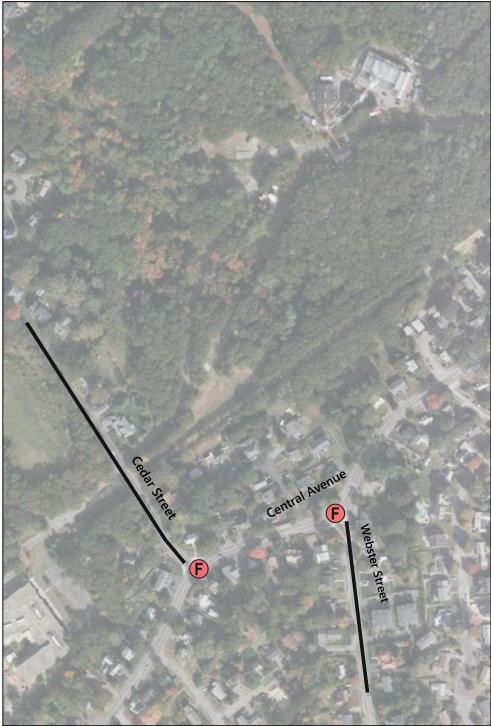
- Updated Off-Site Mitigation Roadway Concept Plans
- Queue Diagrams (Comment 2a)
- Weave Segment Capacity Analysis Worksheets (Comment 2b)
- Collision Diagrams (Comment 8)
- Existing Site Trip Generation Calculations (Comment 12)
- Existing Town of Needham Mode Share Data (Comment 14)
- GPI Gould Street Improvement Concept Plan (Comment 19)
- Intersection Capacity Analysis Worksheets (Comments 19 and 21-24)
- Traffic Signal Warrant Analysis Worksheets (Comment 25)
- Turning Movement Diagrams (Comment 33)



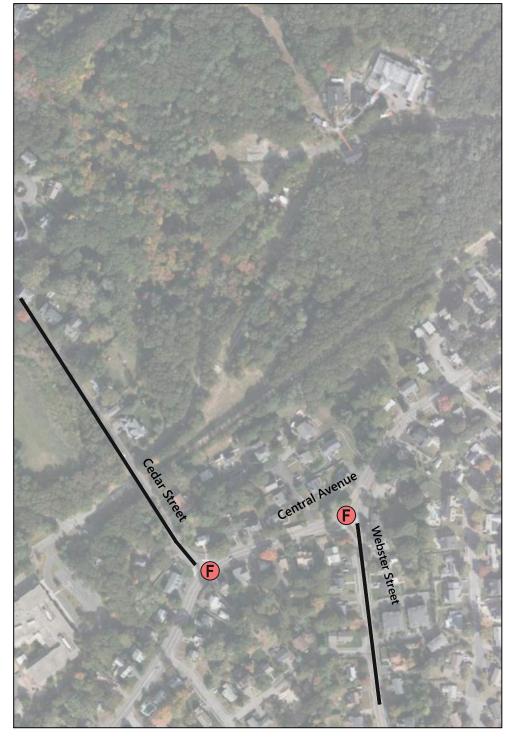








Queue Diagrams


Comment 2a

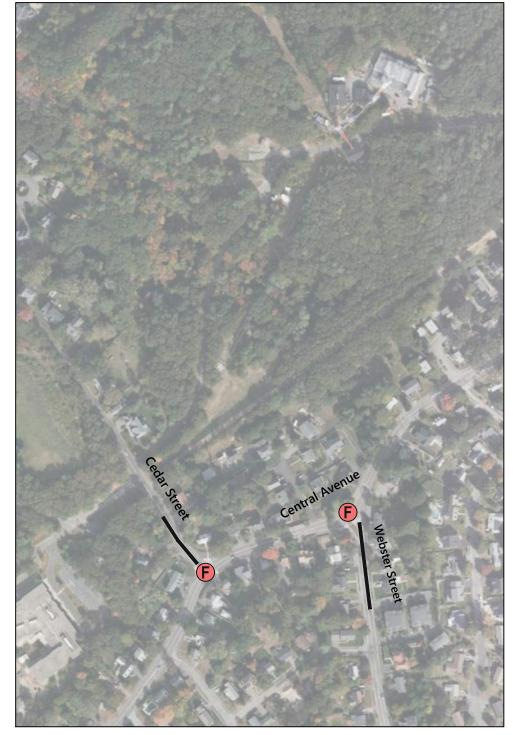
Central Avenue at Cedar Street and Webster Street (Unsignalized)

X Signalized Intersection Level of Service 50th Percentile Queue
X Unsignalized Intersection Level of Service 95th Percentile Queue



2022 Existing 2029 No-Build 2029 Build

Weekday Morning Peak Hour


Central Avenue at Cedar Street and Webster Street (Unsignalized)

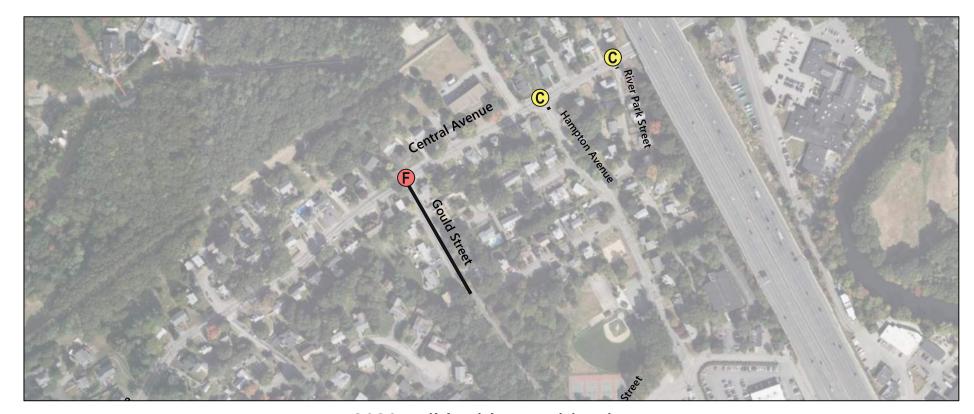
X Signalized Intersection Level of Service 50th Percentile Queue

X Unsignalized Intersection Level of Service 95th Percentile Queue

2022 Existing 2029 No-Build 2029 Build

Queue Diagrams
Weekday Evening Peak Hour

Central Avenue at Gould Street, Hampton Avenue, and River Park Street (Unsignalized)



2022 Existing

2029 No-Build

2029 Build Without Mitigation

Queue Diagrams Weekday Morning Peak Hour

Central Avenue at Gould Street, Hampton Avenue, and River Park Street (Unsignalized)

X Signalized Intersection Level of Service 50th Percentile Queue
Unsignalized Intersection Level of Service 95th Percentile Queue

2022 Existing

2029 No-Build

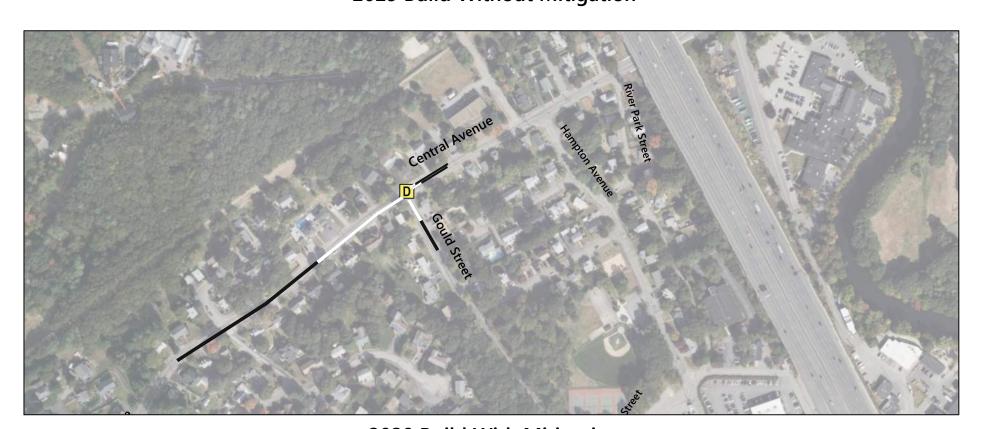
2029 Build Without Mitigation

Queue Diagrams Weekday Evening Peak Hour

^{*} Movement beyond capacity, no results reported.

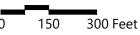
Central Avenue at Gould Street (Unsignalized)

X Signalized Intersection Level of Service 50th Percentile Queue

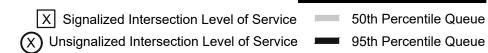

X Unsignalized Intersection Level of Service 95th Percentile Queue

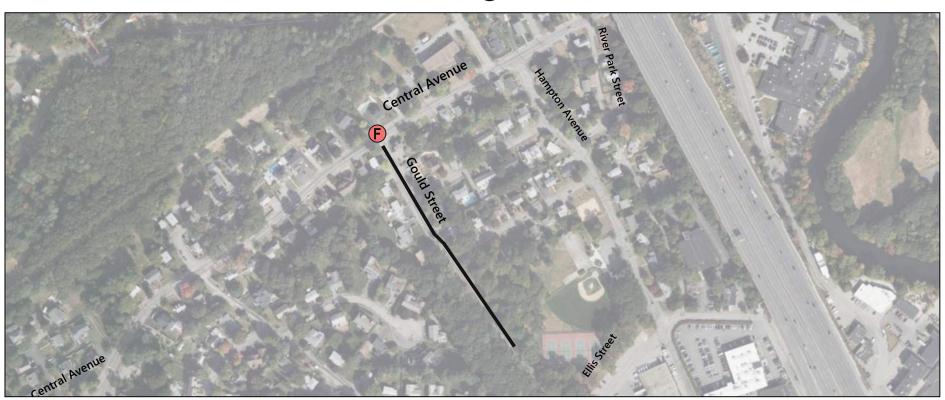
2029 No-Build

2029 Build Without Mitigation

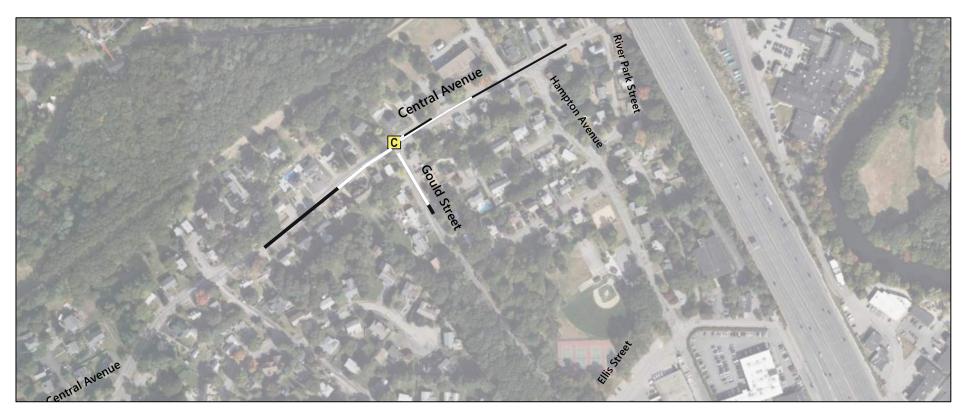

2029 Build With Mitigation

Central Avenue at Gould Street signalized under mitigation conditions.




Queue Diagrams Weekday Morning Peak Hour

Central Avenue at Gould Street (Unsignalized)

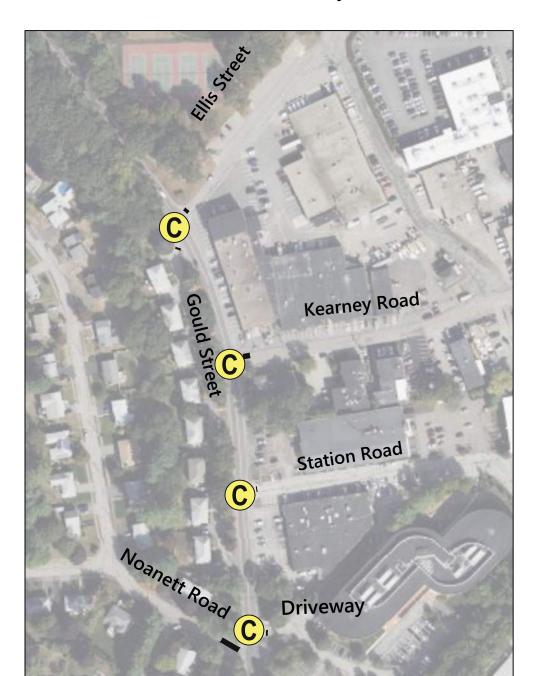


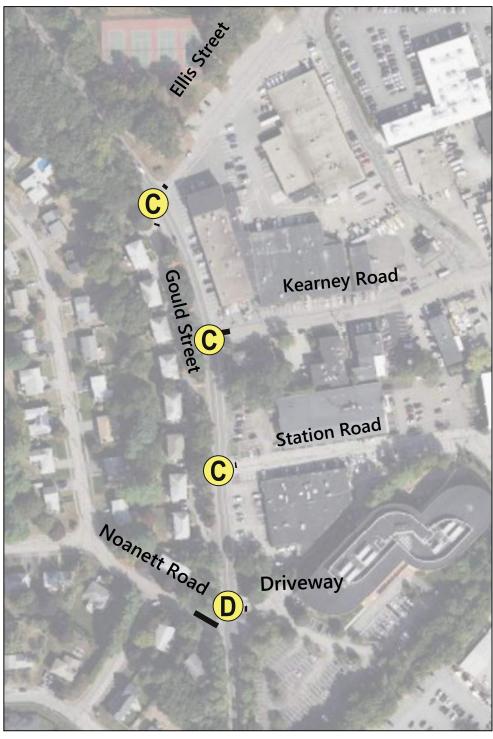
2029 No-Build

2029 Build Without Mitigation

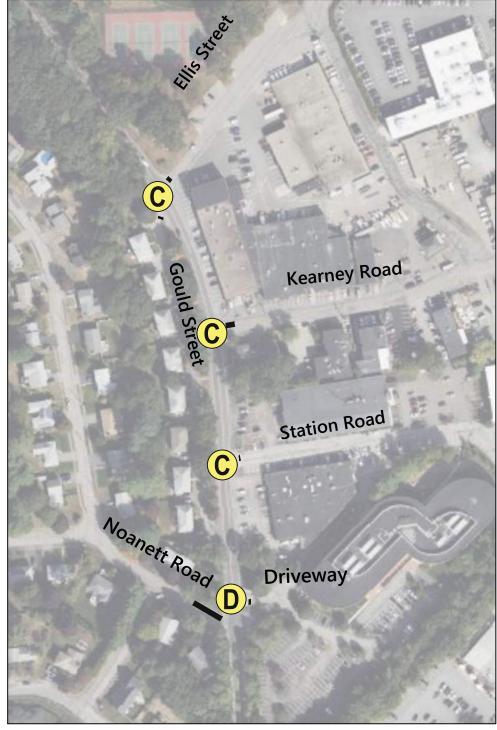
2029 Build With Mitigation

Queue Diagrams Weekday Evening Peak Hour

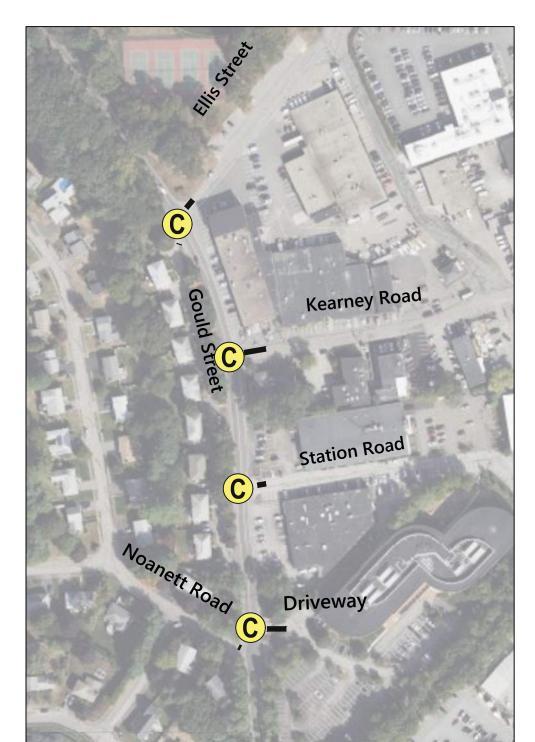


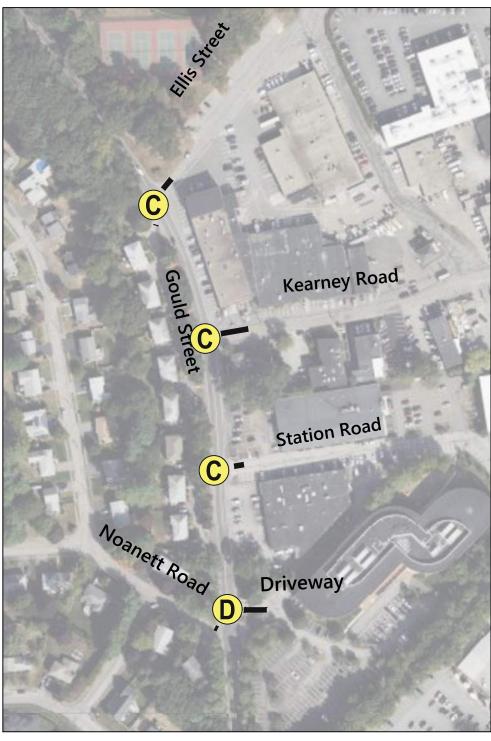


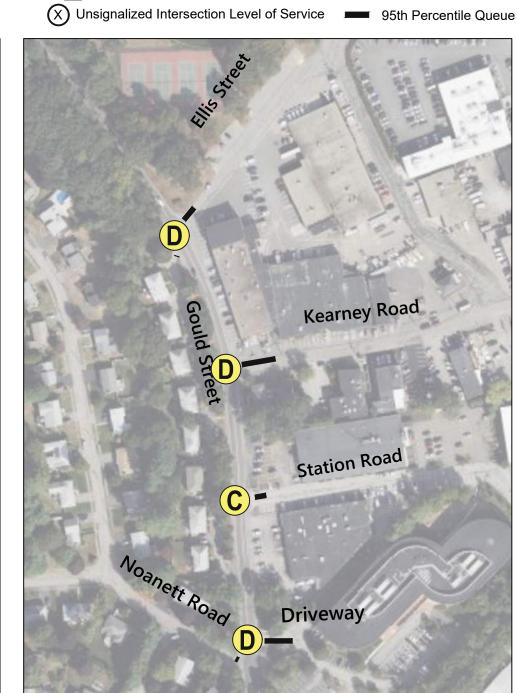

^{*} Movement beyond capacity, no results reported.


Central Avenue at Gould Street signalized under mitigation conditions.

Gould Street at Ellis Treet, Kearney Road, Station Road, and Noanett Road (Unsignalized)


2022 Existing 2029 No-Build 2029 Build

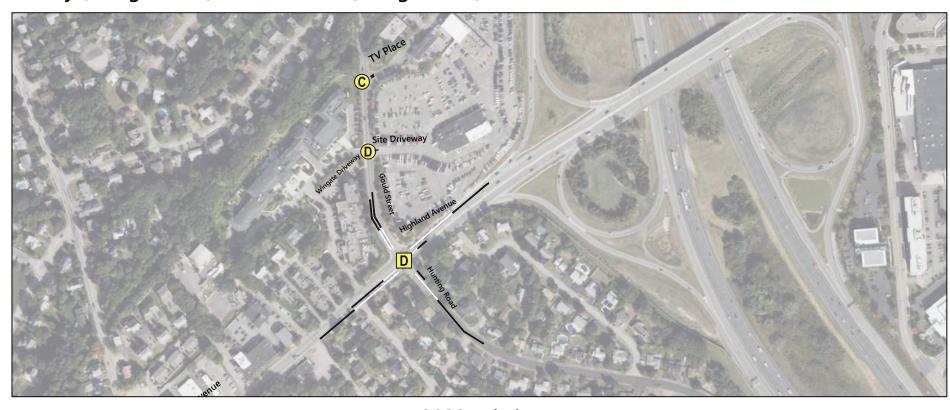



Queue Diagrams

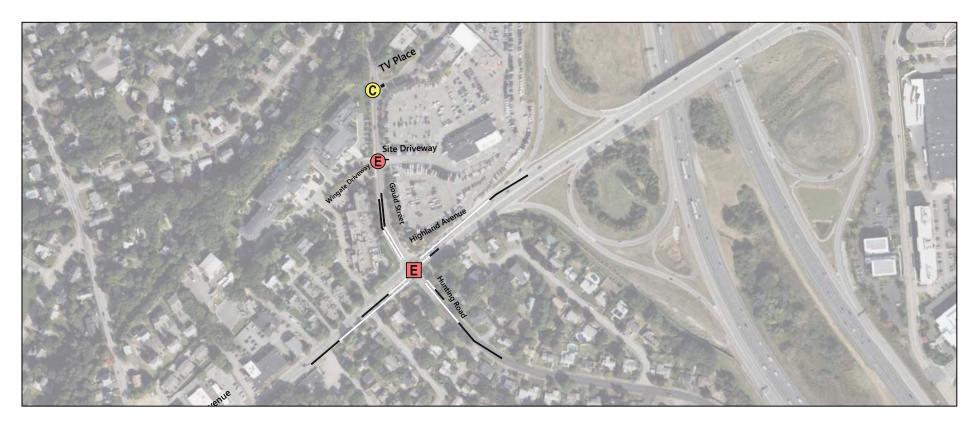
Weekday Morning Peak Hour

Gould Street at Ellis Treet, Kearney Road, Station Road, and Noanett Road (Unsignalized)

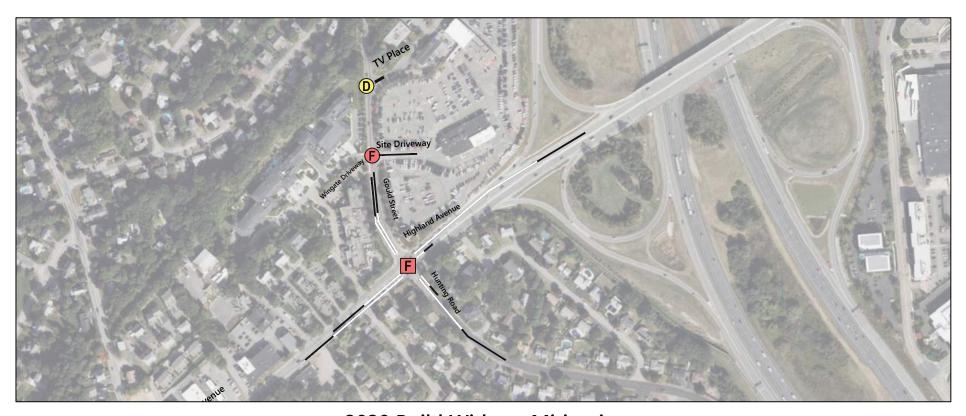
X Signalized Intersection Level of Service


50th Percentile Queue

2022 Existing 2029 No-Build 2029 Build



Queue Diagrams
Weekday Evening Peak Hour


Gould Street at Highland Avenue (Signalized), Site X Signalized Intersection Level of Service 50th Percentile Queue Driveway (Unsignalized), and TV Place (Unsignalized) X Unsignalized Intersection Level of Service 95th Percentile Queue

2022 Existing

2029 No-Build

2029 Build Without Mitigation

Queue Diagrams Weekday Morning Peak Hour

2022 Existing

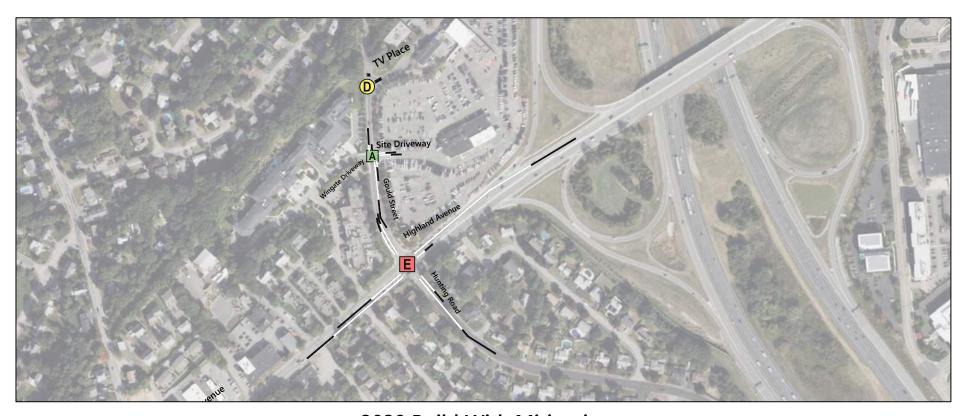
2029 No-Build

2029 Build Without Mitigation

Queue Diagrams Weekday Evening Peak Hour

^{*} Movement beyond capacity, no results reported.

Gould Street at Highland Avenue (Signalized), Site Driveway (Unsignlaized), and TV Place (Unsignalized) (Unsignalized Intersection Level of Service 95th Percentile Queue

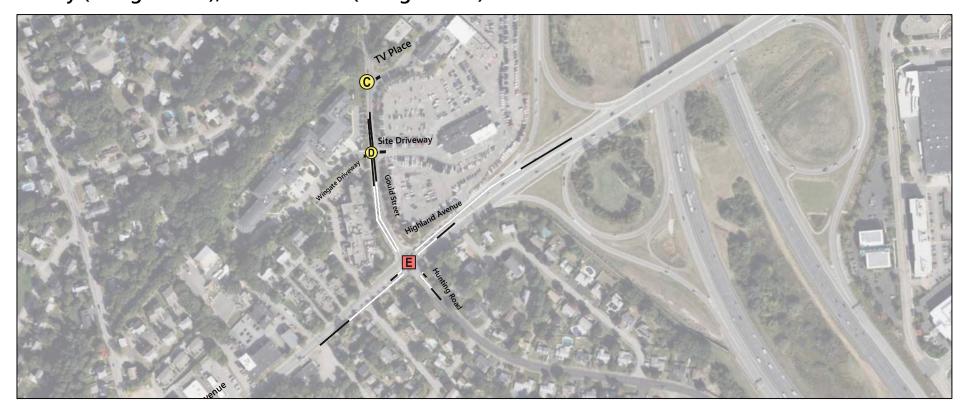

X Signalized Intersection Level of Service 50th Percentile Queue

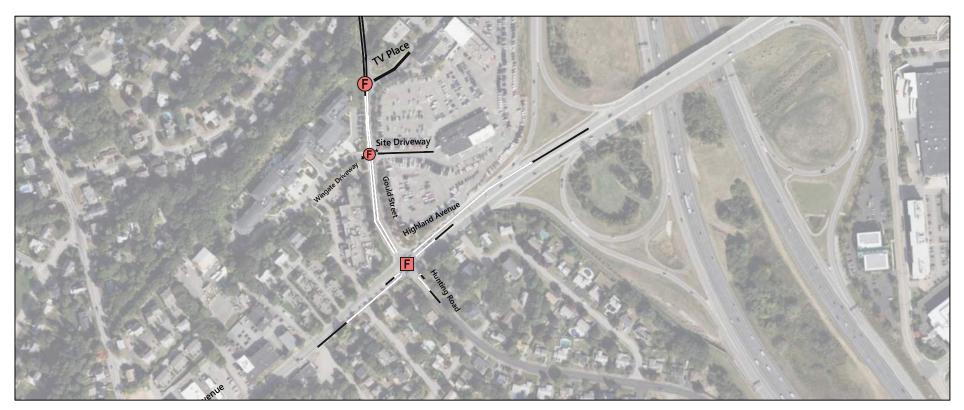
2029 No-Build

2029 Build Without Mitigation

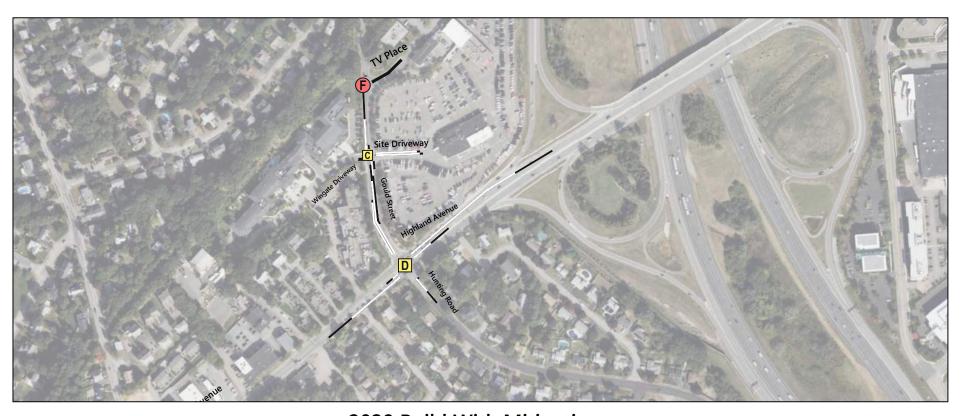
2029 Build With Mitigation

Gould Street at Site Driveway signalized under Mitigation Condition


Queue Diagrams Weekday Morning Peak Hour


Gould Street at Highland Avenue (Signalized), Site Driveway (Unsignlaized), and TV Place (Unsignalized) W Unsignalized Intersection Level of Service

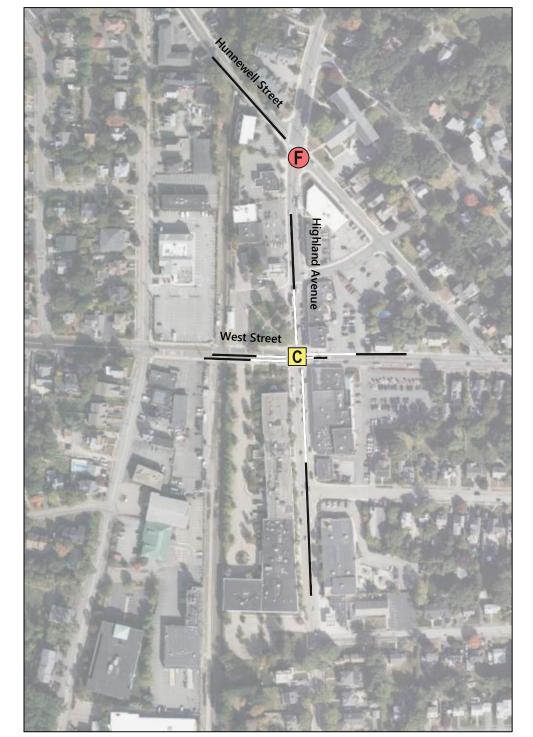
X Signalized Intersection Level of Service


50th Percentile Queue 95th Percentile Queue

2029 No-Build

2029 Build Without Mitigation

2029 Build With Mitigation


Queue Diagrams Weekday Evening Peak Hour

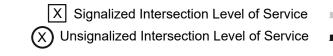


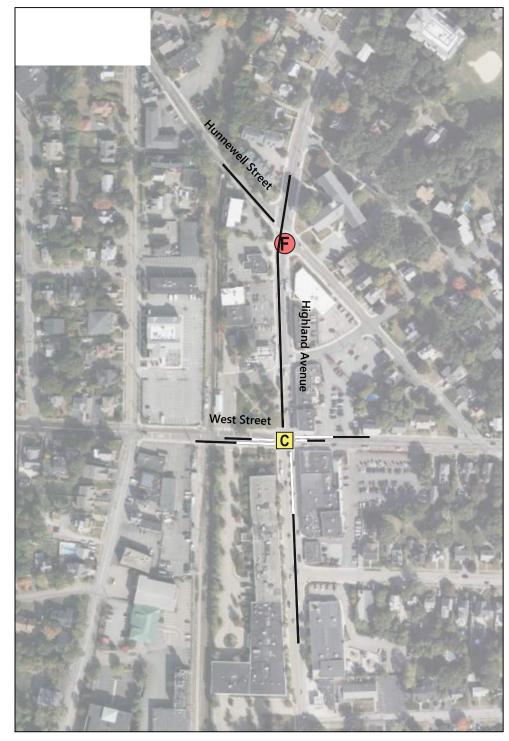
^{*} Movement beyond capacity, no results reported. Gould Street at Site Driveway signalized under Mitigation Condition

Highland Avenue at West Street (Signalized) and Hunnewell Street (Unsignalized)

X Signalized Intersection Level of Service 50th Percentile Queue

2022 Existing 2029 No-Build 2029 Build Without Mitigation

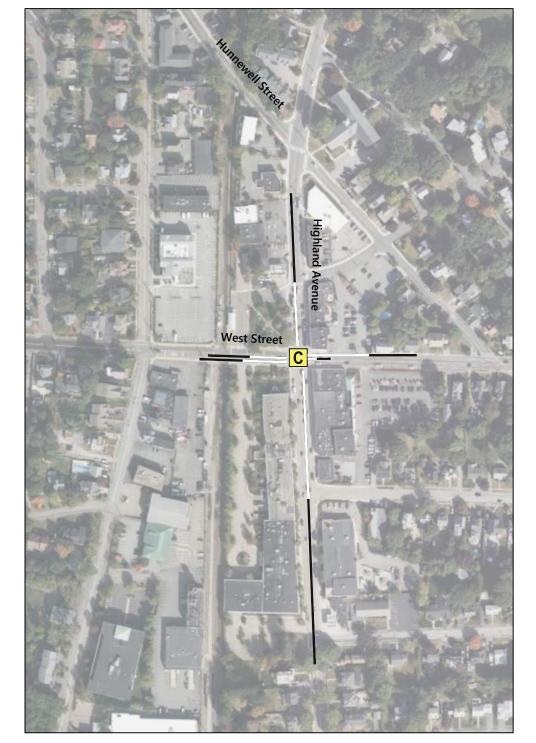

300 Feet


Queue Diagrams
Weekday Morning Peak Hour

^{*} Movement beyond capacity, no results reported.

Highland Avenue at West Street (Signalized) and Hunnewell Street (Unsignalized)

50th Percentile Queue
95th Percentile Queue



2022 Existing 2029 No-Build

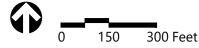
2029 Build Without Mitigation

Queue Diagrams
Weekday Evening Peak Hour

2029 No-Build

X Signalized Intersection Level of Service
X Unsignalized Intersection Level of Service

50th Percentile Queue
95th Percentile Queue


2029 Build With Mitigation

Queue Diagrams
Weekday Morning Peak Hour

557 Highland Avenue Needham, Massachusetts

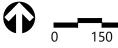
Signal timings modified under Mitigation Conditions

X Signalized Intersection Level of Service

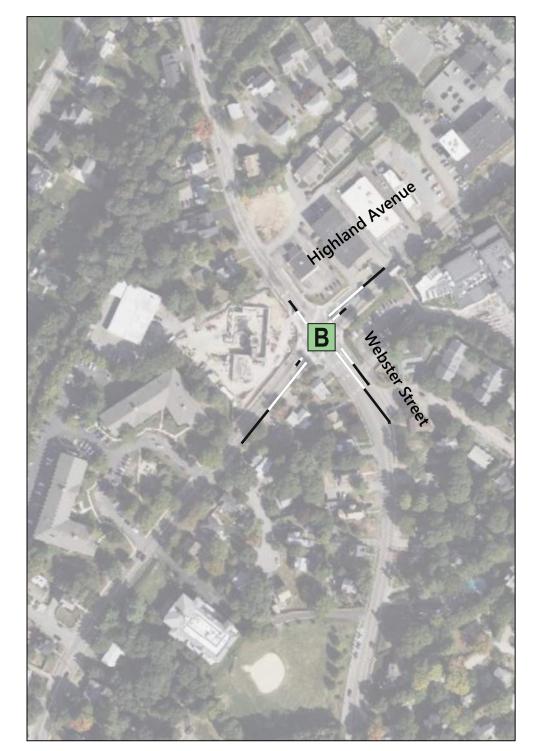
X Unsignalized Intersection Level of Service

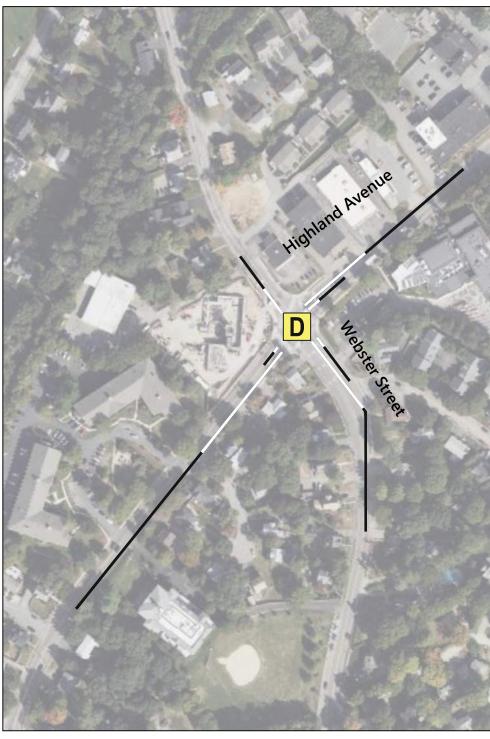
50th Percentile Queue

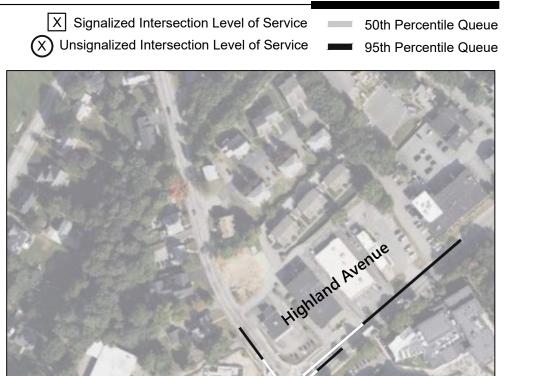
95th Percentile Queue



Queue Diagrams Weekday Evening Peak Hour


> **557 Highland Avenue** Needham, Massachusetts


2029 Build Without Mitigation 2029 No-Build


Signal timings modified under Mitigation Conditions

300 Feet

2029 Build Without Mitigation

Queue Diagrams Weekday Morning Peak Hour

> **557 Highland Avenue** Needham, Massachusetts

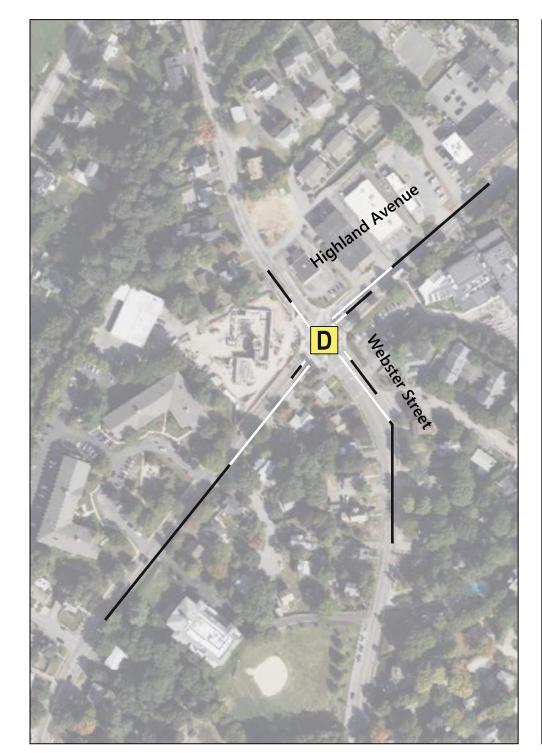
2022 Existing 2029 No-Build

2022 Existing

X Unsignalized Intersection Level of Service 95th Percentile Queue

X Signalized Intersection Level of Service

50th Percentile Queue


2029 No-Build 2029 Build Without Mitigation

Queue Diagrams
Weekday Evening Peak Hour

557 Highland Avenue Needham, Massachusetts

0 100 200 Feet

2029 No-Build

2029 Build Without Mitigation 2029 Build With Mitigation

Signal Timings modified under Mitigation Conditions

200 Feet

X Signalized Intersection Level of Service

X Unsignalized Intersection Level of Service

50th Percentile Queue

95th Percentile Queue

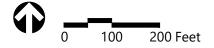
Queue Diagrams Weekday Morning Peak Hour

X Signalized Intersection Level of Service 50th Percentile Queue

Unsignalized Intersection Level of Service 95th Percentile Queue

2029 No-Build

2029 Build Without Mitigation

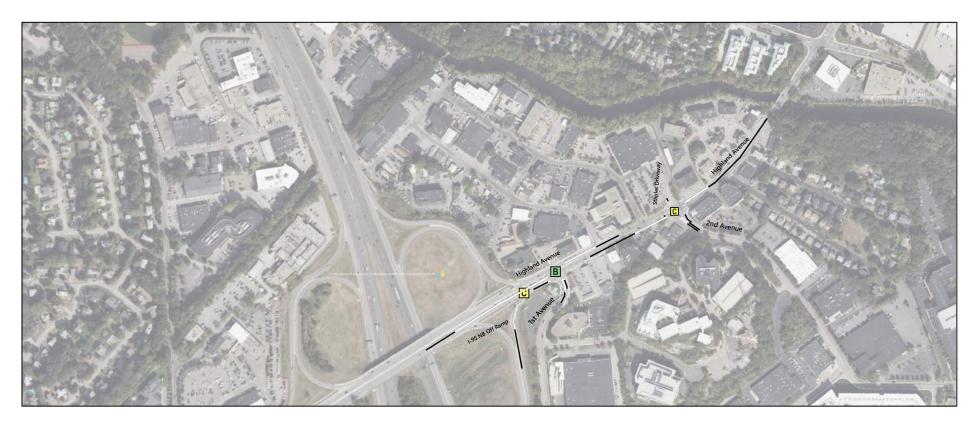

2029 Build With Mitigation

Queue Diagrams

Weekday Evening Peak Hour

557 Highland Avenue Needham, Massachusetts

Signal Timings modified under Mitigation Conditions


Highland Avenue at I-95 Ramps, 1st Avenue, and 2nd Avenue (Signalized)

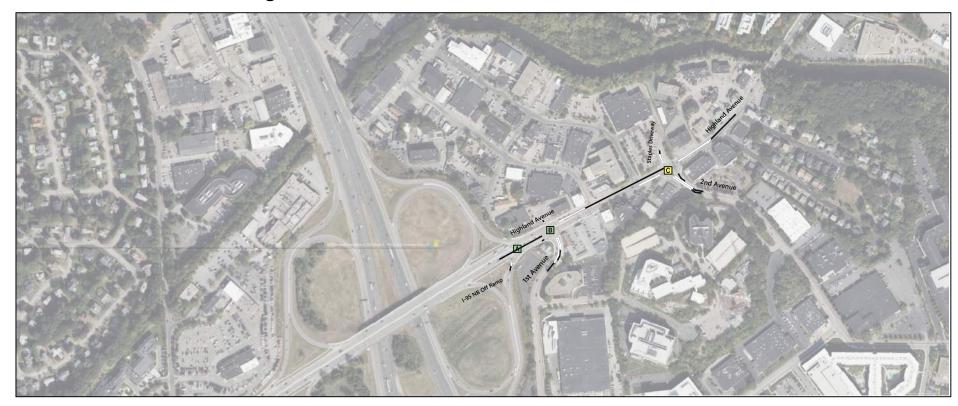
X Signalized Intersection Level of Service
X Unsignalized Intersection Level of Service

50th Percentile Queue95th Percentile Queue

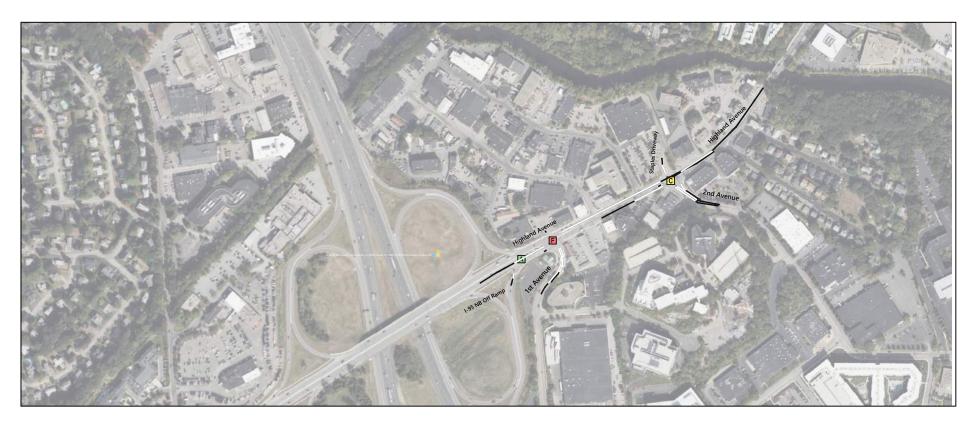
2022 Existing

2029 No-Build

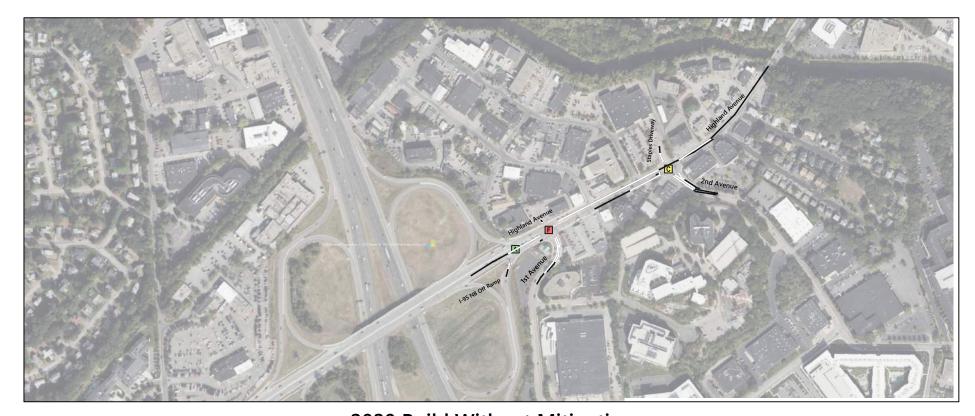
2029 Build Without Mitigation


Queue Diagrams Weekday Morning Peak Hour

Highland Avenue at I-95 Ramps, 1st Avenue, and 2nd Avenue (Signalized)


X Signalized Intersection Level of Service

X Unsignalized Intersection Level of Service


50th Percentile Queue
95th Percentile Queue

2022 Existing

2029 No-Build

2029 Build Without Mitigation

Queue Diagrams Weekday Evening Peak Hour

Highland Avenue at 1st Avenue (Signalized)

X Signalized Intersection Level of Service

X Unsignalized Intersection Level of Service

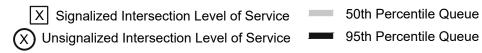
50th Percentile Queue95th Percentile Queue

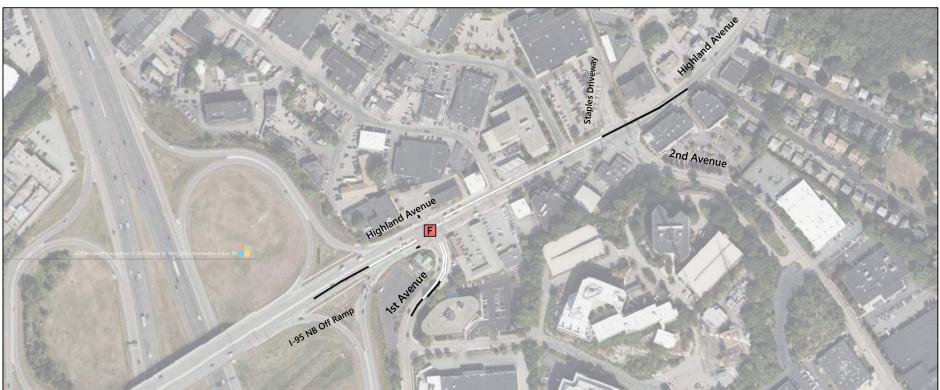
2029 No-Build

2029 Build Without Mitigation

2029 Build With Mitigation

Signal Timings modified under Mitigation Conditions




Queue Diagrams Weekday Morning Peak Hour

175 350 Feet

Highland Avenue at 1st Avenue (Signalized)



2029 No-Build

2029 Build Without Mitigation

2029 Build With Mitigation

Signal Timings modified under Mitigation Conditions

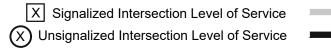
Queue Diagrams Weekday Evening Peak Hour

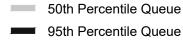
Hunting Road at Kendrick Street (Signalized)

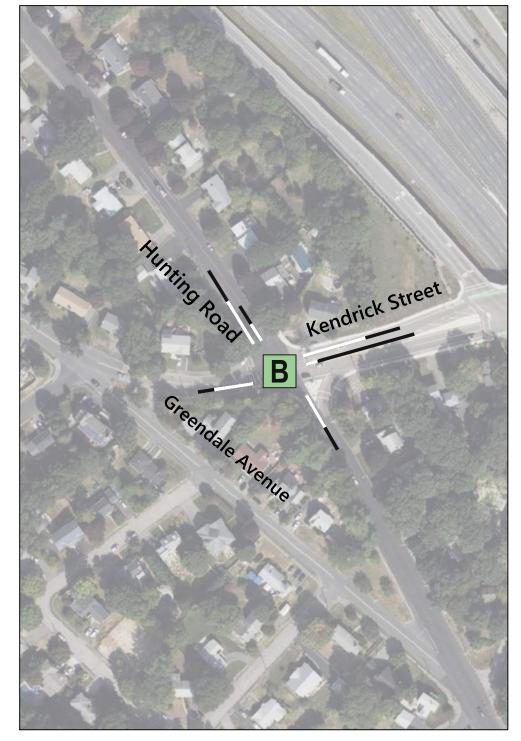
Kendrick Street

X Signalized Intersection Level of Service
Unsignalized Intersection Level of Service
95th Percentile Queue

2022 Existing 2029 No-Build



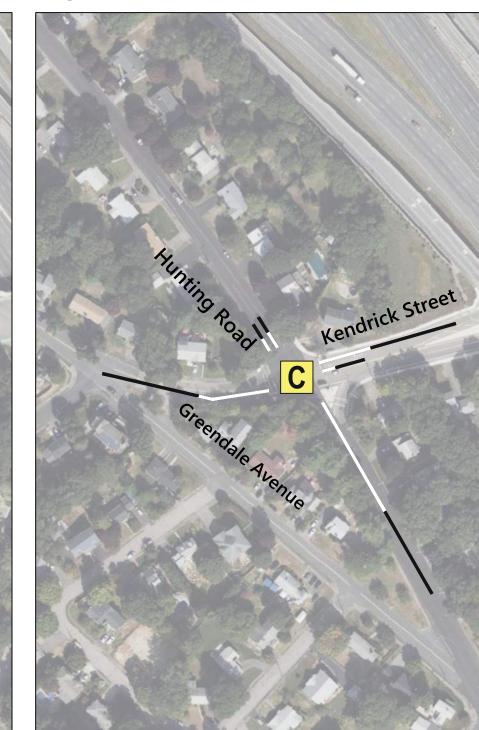

Queue Diagrams
Weekday Morning Peak Hour



2029 Build Without Mitigation



Queue Diagrams Weekday Evening Peak Hour


> **557 Highland Avenue Needham, Massachusetts**

2022 Existing 2029 No-Build

Hunting Road at Kendrick Street (Signalized)

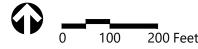
X Signalized Intersection Level of Service

X Unsignalized Intersection Level of Service

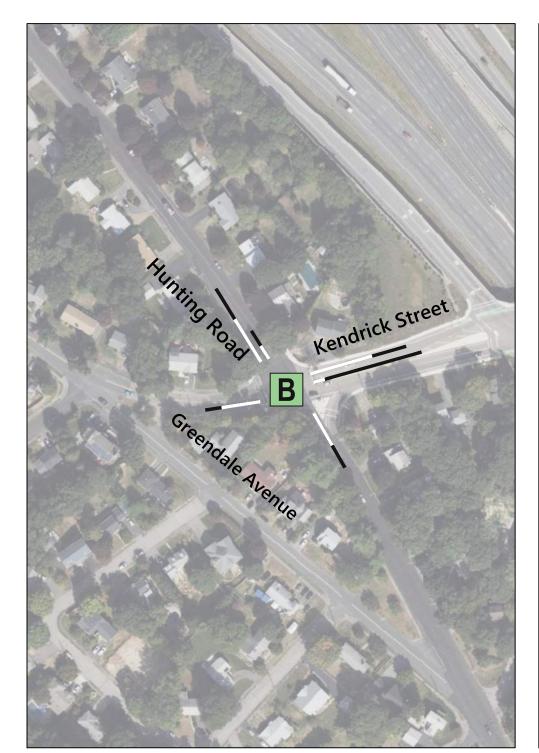
50th Percentile Queue

95th Percentile Queue

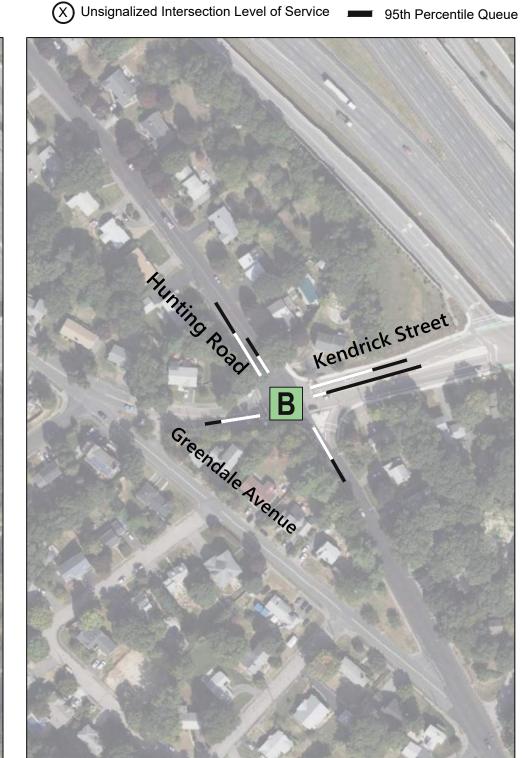
2029 No-Build


2029 Build Without Mitigation

2029 Build With Mitigation


Queue Diagrams Weekday Morning Peak Hour

> **557 Highland Avenue Needham, Massachusetts**


Signal timings modified under Mitigation Conditions

Hunting Road at Kendrick Street (Signalized)

X Signalized Intersection Level of Service 50th Percentile Queue

2029 No-Build

2029 Build Without Mitigation

2029 Build With Mitigation

Queue Diagrams

Queue Diagrams
Weekday Evening Peak Hour

557 Highland Avenue Needham, Massachusetts

Signal timings modified under Mitigation Conditions

Weave Segment Capacity Analysis Worksheets
Comment 2b

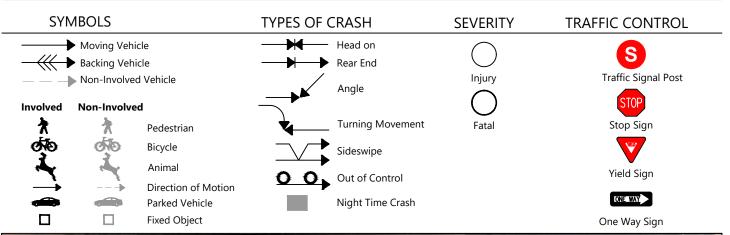
557 Highland Avenue TIS **Weaving Segment Analysis**

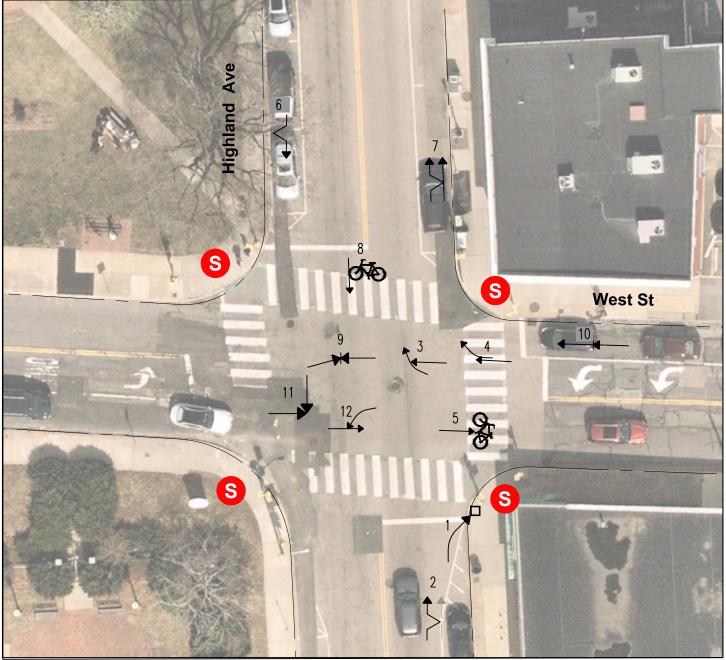
	9 6.	ilene Anarysis																											
																	Step 1: Inp	put Data											
											Geometric Ir	puts										Volume (Characteristic	cs for Each Mov	ement				
														Interchanges				Hourly			Hourly			Hourly			Hourly		$\overline{}$
							Number of lanes							within 3			Equivalent	demand			demand			demand			demand		
						Freeway or	within the	One-sided vs	Short length	Number of	Number of	Number of	Number of	miles			capacity of	volume, V _{FF}			volume, V _{RE}			volume, V _{ER}			volume, V _{RR}		
						Highway/C-D	weaving	two-sided			lane changes.		weaving	up/downstre		Free-flow	basic freeway				(Ramp-to-			(Freeway-to-			(Ramp-to-		
1	conorio	Direction Road		Start	End	Road	segment, N	Weave			ialle clialiges,	ialle clialiges,		am	Terrain type			Freeway)	B.1.E	111/0/	Freeway)	BUE	111/0/	Ramp)		111/0/	Ramp)	DUE	1111/0/
1.	Scenario	Direction Road		Start	Ellu	Noau	segment, N	vveave	segment, L _s	LC _{RF}	LC _{FR}	LC _{RR}	lanes	aiii	rerrain type	speed	segment	rieewayj	PHF _{FF}	HV% _{FF}	rieeway)	PHF _{RF}	HV% _{RF}	naiiip)	PHF _{FR}	HV% _{FR}	Railip)	PHF _{RR}	HV% _{RR}
	2022 EXIST	ING ANALYSIS																											
	Existing AM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	685	0.98	0.01	725	0.91	0.02	410	0.98	0.01	15	0.91	0.02
	Existing AM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	215	0.97	0.03	90	0.93	0.01	410	0.97	0.03	5	0.93	0.01
	Existing PM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	505	0.98	0.01	265	0.96	0.02	365	0.98	0.01	5	0.96	0.02
	Existing PM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	625	0.95	0.01	110	0.94	0.01	450	0.95	0.01	5	0.94	0.01
	2029 NO BU	JILD ANALYSIS																											
	Existing AM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	810	0.92	0.01	945	0.92	0.02	440	0.92	0.01	20	0.92	0.02
	Existing AM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	250	0.92	0.03	100	0.92	0.01	470	0.92	0.03	5	0.92	0.01
	Existing PM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	575	0.92	0.01	360	0.92	0.02	395	0.92	0.01	5	0.92	0.02
	Existing PM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	730	0.92	0.01	120	0.92	0.01	575	0.92	0.01	5	0.92	0.01
	2029 BUILD	ANALYSIS																											
	Existing AM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	815	0.92	0.01	945	0.92	0.02	460	0.92	0.01	20	0.92	0.02
	Existing AM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	285	0.92	0.03	265	0.92	0.01	470	0.92	0.03	5	0.92	0.01
	Existing PM	EB Highland Ave	nue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	Highway	3	One-sided	750	1	1	0	2	12	Level	45	1900	610	0.92	0.01	360	0.92	0.02	545	0.92	0.01	5	0.92	0.02
	Existing PM	WB Highland Ave	nue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	Highway	3	One-sided	670	1	1	0	2	12	Level	45	1900	735	0.92	0.01	150	0.92	0.01	575	0.92	0.01	5	0.92	0.01

Source: Based on methodology presented in the Highway Capacity Manual: 6th Edition (HCM 6)

											Step 2:	Adjust Volur	ne						St	ep 3: Determin	e Configurat	tion Characterist		Step 4: Dete	rmine Maxin Length	num Weaving
																							Equation 13-		Equation 13	j.
						ŀ	leavy Vehicle Vo	olume Adjustr	ment Factors			Equat	ion 13-1			Combined	l Volumes			Geom	etrics		2 or 13-3	Geometrics		Check
2.	Scenario	Directio	n Road	Start	End	Passenger Car Equivalent of Heavy Vehicle for Freeway, E ₊	Heavy Vehicle Adjustment Factor, f _{uv se}	Heavy Vehicle Adjustment	Heavy Vehicle Adjustment	Heavy Vehicle	demand flow	Ramp-to- freeway demand flow rate, v _{ps}	Freeway-to- ramp demand flow rate, v _{ED}	Ramp-to- ramp demand flow rate, V _{pp}	Weaving demand flow rate, v _w	Nonweaving demand flow rate, v _{NW}	Total demand flow rate, v	Volume ratio, VR	lanes within	weaving maneuver may be made with	from on-ram to freeway,	to off-ramp,	rate of lane changing,	Length of weaving	Maximum weaving segment length, L _{MAX}	Check that Weave Analysis is Warranted
					2110	ioi i i ceway, L _T	Tuccor, T _{HV,FF}	Tuctor, T _{HV,RF}	Tuctor, T _{HV,FR}	Tuctor, I _{HV,RR}	rate, v _{FF}	rate, v _{RF}	rute, v _{FR}	rate, v _{RR}	rate, v _W	rate, v _{NW}	, .	• • • • • • • • • • • • • • • • • • • •	segment, it	changes, N _{WL}	-C _{RF}	LC _{FR}	LOMIN	Segment, L _S	iciigeii, L _{MAX}	- Tunicu
	2022 EXISTI	ING AN	ALYSIS																							
	Existing AM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	706	813	423	17	1235	723	1958	0.63	3	2	1	1	1235	750	9396	OK
	Existing AM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.97	0.99	0.97	0.99	228	98	435	5	533	234	767	0.70	3	2	1	1	533	670	10196	OK
	Existing PM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	520	282	376	5	658	526	1184	0.56	3	2	1	1	658	750	8485	OK
	Existing PM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.99	0.99	0.99	0.99	664	118	478	5	597	670	1266	0.47	3	2	1	1	597	670	7490	OK
	2029 NO BU	JILD AI	IALYSIS	·	·																					
	Existing AM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	889	1048	483	22	1531	911	2442	0.63	3	2	1	1	1531	750	9346	OK
	Existing AM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.97	0.99	0.97	0.99	280	110	526	5	636	285	921	0.69	3	2	1	1	636	670	10134	ОК
	Existing PM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	631	399	434	6	833	637	1470	0.57	3	2	1	1	833	750	8616	OK
	Existing PM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.99	0.99	0.99	0.99	801	132	631	5	763	807	1570	0.49	3	2	1	1	763	670	7663	ОК
	2029 BUILD	ANAL	/SIS	· r	· •																					
	Existing AM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	895	1048	505	22	1553	917	2470	0.63	3	2	1	1	1553	750	9369	OK
	Existing AM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.97	0.99	0.97	0.99	319	291	526	5	817	325	1142	0.72	3	2	1	1	817	670	10455	OK
	Existing PM	EB	Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	2	0.99	0.98	0.99	0.98	670	399	598	6	997	675	1673	0.60	3	2	1	1	997	750	8974	OK
	Existing PM	WB	Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	2	0.99	0.99	0.99	0.99	807	165	631	5	796	812	1608	0.49	3	2	1	1	796	670	7767	ОК

Source: Based on methodology presented in the Highway Capacity Manual: 6th Edition (HCM 6)

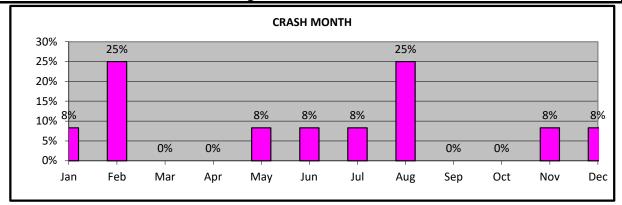

							Step 5: Dete	rmine Weav	ing Segment C	Capacity					Step	6: Determine	Lane-Chang	ing Rates			Step 7: De	termine Aver	age Speeds of	Weaving and	Step 8: Det	termine LOS
						egment Capacity De ity Equations 13-5 &	•	Capacity D Weaving D	ng Segment Determined by Demand Flows s 13-7 & 13-8)	Final	Volume-to- Capacity Ratio (Equation 13-10)	LOS F	Geometrics	1 -	Equation 13	3- Equation 13- 13	Equation 13	- Equation 13	3- Equation 13- 16	Equation 13-		3- Equation 1	3- Equation 13 21	- Equation 13 22		}- Exhibit 13-6
s. Scenario	1	Direction Road	Start	End	equivalent ide	freeway segment with the same	Total capacity under prevailing conditions,	Capacity of all lanes, c _{IW}	Capacity of all lanes under prevailing conditions, c _w	Final	Volume-to- capacity ratio, v/c	LOS F Check	Interchange density, ID	Total rate of lane changing by weaving vehicles, LC _w	Nonweaving vehicle index I _{NW}			g lane changin by	Total rate of lane changing	g lane changing g by all vehicles	speed of	Weaving intensity factor, W	Average speed of nonweaving vehicles, S _{NW}	•	Average density of all vehicles, D	LOS
2022 EX	XISTIN	IG ANALYSIS																·								
Existing	g AM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1239	1900	3679	3804	3767	3679	0.53	NOT F	2.00	1415	108	0	1850	-3392	0	1415	36.9	0.37	33.0	35.3	18.5	В
Existing	g AM	WB Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	1171	1900	3411	3452	3352	3352	0.22	NOT F	2.00	696	31	0	1741	-3398	0	696	39.3	0.23	39.9	39.5	6.5	Α
Existing	g PM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1308	1900	3886	4318	4276	3886	0.30	NOT F	2.00	837	79	0	1806	-3393	0	837	39.1	0.25	38.4	38.8	10.2	Α
Existing	g PM	WB Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	1378	1900	4094	5095	5044	4094	0.31	NOT F	2.00	759	90	0	1838	-3423	0	759	39.0	0.25	38.7	38.8	10.9	Α
2029 N	NO BUI	LD ANALYSIS																								
Existing	g AM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1242	1900	3690	3829	3791	3690	0.66	NOT F	2.00	1710	137	16	1892	-3341	16	1727	35.9	0.44	30.1	33.5	24.3	С
Existing	g AM	WB Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	1176	1900	3425	3477	3376	3376	0.26	NOT F	2.00	799	38	0	1753	-3402	0	799	38.8	0.26	38.9	38.9	7.9	Α
Existing	g PM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1298	1900	3856	4235	4193	3856	0.38	NOT F	2.00	1012	96	0	1831	-3393	0	1012	38.3	0.29	36.7	37.6	13.0	В
Existing	g PM	WB Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	1365	1900	4054	4938	4889	4054	0.38	NOT F	2.00	926	108	0	1869	-3427	0	926	38.2	0.29	37.0	37.6	13.9	В
2029 B	BUILD	ANALYSIS	_																							
Existing	g AM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1241	1900	3685	3817	3779	3685	0.66	NOT F	2.00	1732	138	18	1893	-3337	18	1750	35.8	0.44	29.9	33.4	24.7	С
Existing	g AM	WB Highland Avenue WB	I-95 NB Off-Ramp	I-95 SB On-Ramp	1151	1900	3354	3353	3256	3256	0.34	NOT F	2.00	980	43	0	1761	-3405	0	980	38.0	0.31	37.3	37.8	10.1	Α
Existing	g PM	EB Highland Avenue EB	I-95 SB Off-Ramp	I-95 NB On-Ramp	1271	1900	3775	4025	3985	3775	0.44	NOT F	2.00	1177	101	0	1840	-3393	0	1177	37.7	0.32	35.1	36.6	15.2	В


Existing PM WB Highland Avenue WB 1-95 NB Off-Ramp 1-95 NB On-Ramp

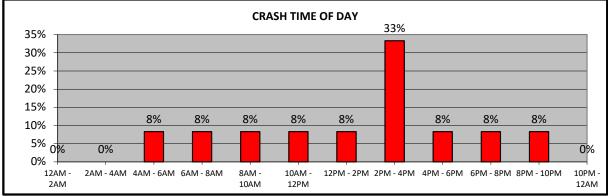
Source: Based on methodology presented in the Highway Capacity Manual: 6th Edition (HCM 6)

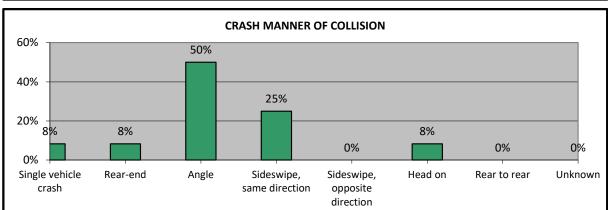
Collision Diagrams

Comment 8

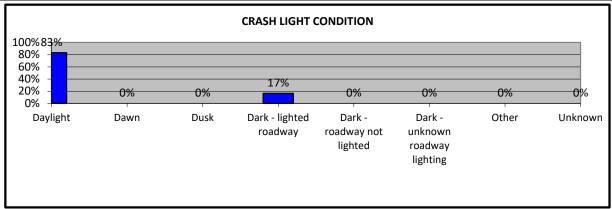

Crash Data Summary Table

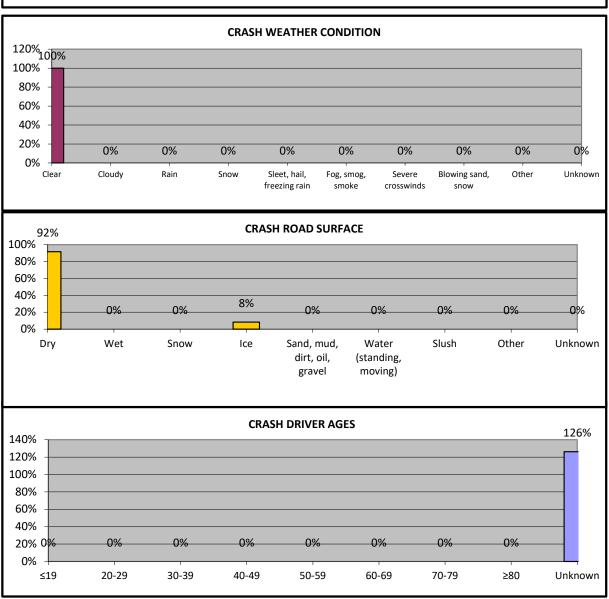
Highland Ave at West St 2017 - 2019

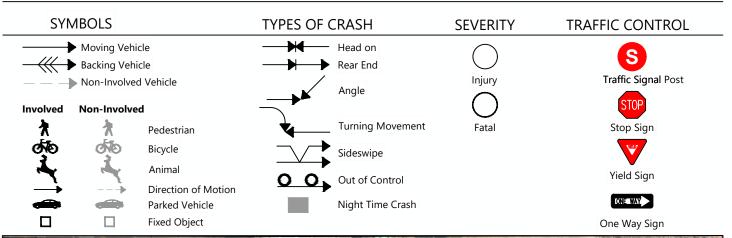

								2017 2013					
Crash													
Diagram Ref #	Creek Dete	Crash Day	Time of	Manner of Collision	Light Condition	Weather Condition	Road Surface	Duivey Contribution Code	D1 A==	D2 4 ==	D2 A==	D4 4 ***	Comments
Ket #	Crash Date	Day	Day hh:mm	Type	Type	Type	Type	Driver Contributing Code Type	D1 Age	D2 Age	D3 Age	D4 Age	Comments
1		Friday	4:11 PM	Single vehicle crash	Daylight	Clear	Dry	Inattention	Unknown	Unknown	"	n	Tractor trailer struck and knocked down a light post, then continued driving. Truck took a right from Highland Ave onto West St. Light portion of the traffic pole was knocked down and hanging on pole by 3 wires.
2	02/08/17	Wednesday	5:45 AM	Sideswipe, same direction	Daylight	Clear	Ice	No improper driving	Unknown	Unknown			Vehicle #2 was traveling north on Highland Ave. Flash freeze on the roads at the time. Vehicle #2 stopped for red light signal and its trailer slid sideways stricking Vehicle #1 which was parked.
3	05/19/17	Friday	2:09 PM	Angle	Daylight	Clear	Dry	Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #2 was stopped at red light at the intersection of Highland Ave and West St. Vehilce #2 was in a marked left turn only lane. To the right of Vehicle #2 is a separate lane for right turns and for traffic going straight. When the ligh turned green, Vehicle #2 took a right turn, failing to follow the marked lane, and caused a collision with Vehicle #1. Vehicle #1 was to the right of Vehicle #2 at the red light. Property damage, no injury.
4	07/19/17	Wednesday	3:59 PM	Sideswipe, same direction	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Bus turning right from West St to Highland Ave. Rear of Bus struck the right side of Vehicle that was sitting to the left of it. No injuries.
5	08/28/17	Monday	10:45 AM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle crash involving a cyclist. Vehicle #1 was moving eastbound on West St towards Highland Ave with a green light. Cyclist entered crosswalk to cross the intersection. Property damaged, no injury.
6	02/07/19	Thursday	8:41 PM	Angle	Dark - lighted roadway	Clear	Dry	Unknown	Unknown	Unknown			Hit and run crash to a parked vehicle. Vehicle parked on Corner of Highland Ave facing south, truck hit her vehicle while taking a left turn into Trader Joes.
7	08/15/19	Thursday	2:57 PM	Sideswipe, same direction	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Hit and run. No injuries were reported. Vehicle #1 was attempting to park on Highland Ave, tractor trailer truck was turning onto Highland Ave from West St and clipped the driver's side of Vehicle #1.
8	08/23/19	Friday	12:09 PM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle #1 was stopped at the red light ton West St in the left turn only lane. The cyclist entered the crosswalk just before the walk signal ended and was proceding thru the crosswalk. The light turned to green and Vehicle #1 started the left turn and was about half way through the crosswalk when the cyclist ran into the passenger side of vehicle #1. The cyclist fell off the bicycle on the ground. No injuries or damages.
9	12/07/19	Saturday	8:00 AM	Head on	Daylight	Clear	Dry	Other improper action	Unknown	Unknown			Vehicle #1 was turning left to go northbound onto Highland Ave from West St. Vehicle #2 was travelling westbound on West St crossing over Highland Ave. Vehicle #2 was struck vehicle #1 as it was making the turn. Both vehicles sustained moderate damage, but did not have to be towed from the scene. No injuries were reported.
10	01/25/17	Wednesday	6:11 PM	Rear-end	Dark - lighted roadway	Clear	Dry	Unknown	Unknown	Unknown			No injuries. Vehicle #1 was unable to stop when Vehicle #2 in front of her stopped. Vehicle #1 had heavy front end damage, there was damage to the rear of vehicle #2.
11	06/01/18	Friday	6:38 AM	Angle	Daylight	Clear	Dry	Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #2 was traveling north on Highland Ave and was struck by Vehicle #1 that was traveling WB on West St.
12	11/13/18	Tuesday	3:49 PM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			No injuries. Vehicle #1 was traveling down West St and turning left. Vehicle #2 was on West St going towards Webster St when the operator of Vehicle #1 turned left and hit vehicle #2. Vehicle #1 was removed by tow.

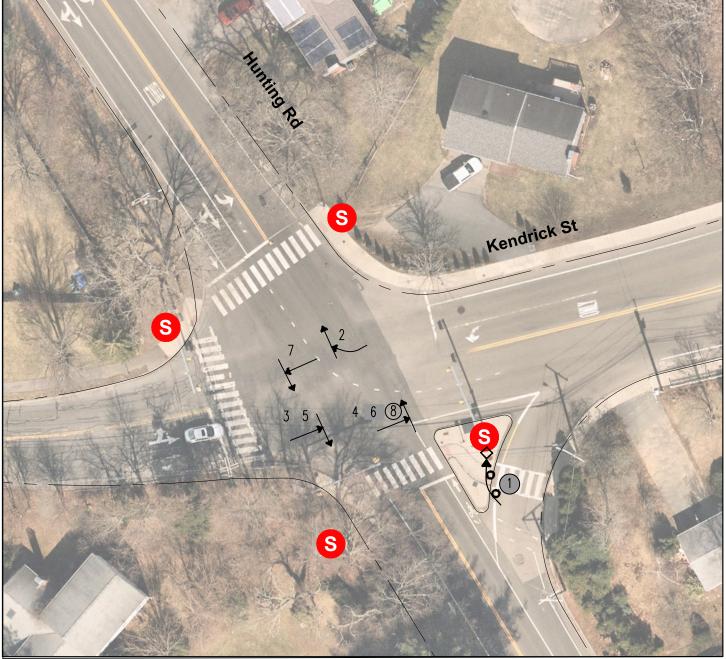

1 of 1 6/14/2022

Crash Data Summary Charts Highland Ave at West St

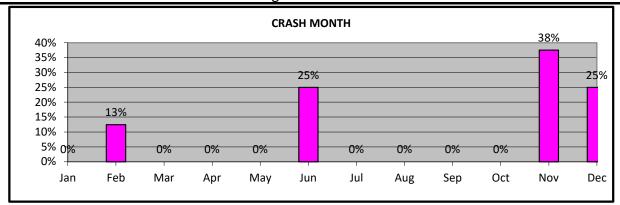


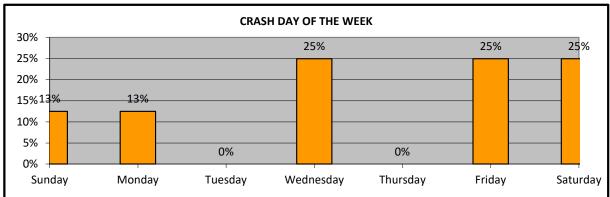


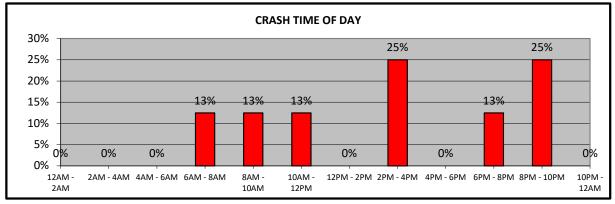


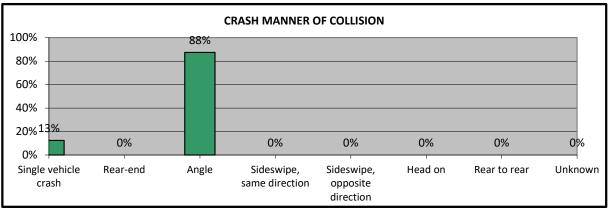


Crash Data Summary Charts Highland Ave at West St

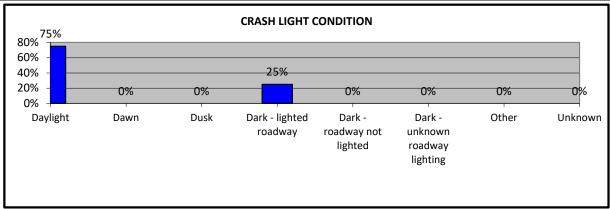

Crash Data Summary Table

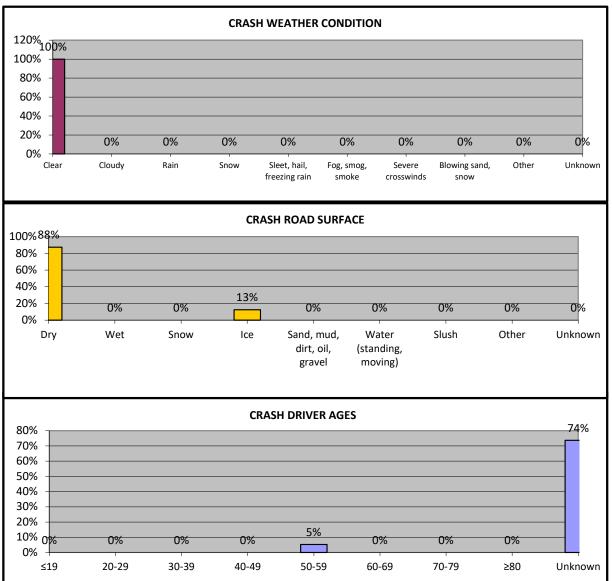

Hunting Rd at Kendrick St 2017 - 2019

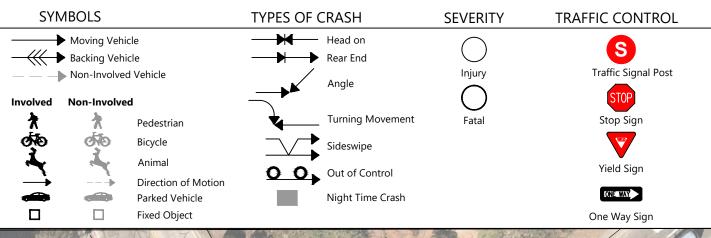

Crash						1		2017 - 2019	1				
Diagram			Time of										
	Crash Date	Crash Day	Day	Manner of Collision	Light Condition	Weather Condition	Road Surface	Driver Contributing Code	D1 Age	D2 Age	D3 Age	D4 Age	Comments
#	mm/dd/yy	Day	hh:mm	Туре	Туре	Туре	Туре	Туре	#	#	#	#	
1	02/08/17	Wednesday	6:30 AM	Single vehicle crash	Dark - lighted roadway	Clear	Ice	No improper driving	Unknown				Vehicle #1 was traveling northobund on Hunting Road when the extremely ice condition caused him to slide up onto a curb and struck the base of the a traffic light pole. Driver complained of dizziness and was evaluated. Flash freeze. Pole was not damaged.
2	11/10/17	Friday	10:57 AM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle #1 was traveling on Hunting Rd and crossing through a green light over Kendrick St to continue on Hunting Rd. Vehicle #2 stated he was stopped at red light on Kendrick St when he tried to take a right turn on red onto Hunting Rd. Vehilce #2 struck Vehicle #1 as it attempted to turn onto Hunting Rd. Vehicle #1 suffered minor damage ot the passenger side of front door. Vehicle #2 suffered minor damage to the driver's side front wheel well and front driver's side panel. No injuries were reported.
3	06/18/18	Monday	9:37 PM	Angle	Daylight	Clear	Dry	Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #1 was traveling on Hunting Rd SB heading towards Cheney St. Vehicle #2 was on Kendrick St heading EB towards Newton. No injuries reported, Vehicle #1 had minor to moderate passenger side damage. Vehicle #2 had moderate front end damage.
4	11/03/18	Saturday	8:41 PM	Angle	Daylight	Clear		Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #1 east on Hunting, Vehicle #2 north of Kendrick. No injury, minor to moderate damage.
5	11/21/18	Wednesday	2:44 PM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle #1 traveling EB on Kendrick St heading towards Newton. Vehicle #2 traveling WB on Kendrick St, making a left turn onto Hunting Rd. No inuries reported, moderate damages to vehicles
6	06/28/19	Friday	7:50 PM	Angle	Dark - lighted roadway	Clear	Dry	Inattention	Unknown	54			Vehicle #2 was traveling west on Kendrick Street with the right of way when vehicle #1 entered the intersection on a red light. No reported injuries and both vehicles had to be towed from the scene.
7	12/28/19	Saturday	3:48 PM	Angle	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle #1 traveling esouth on Hunting Rd when vehicle #2 crashed into the left side of his car. No injuries, both vehicles were towed.
8	12/01/19	Sunday	8:48 AM	Angle	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Vehicle #1 was travelling EB on Kendrick St. Vehicle #2 was travelling northbound on Hunting Road. Serious damage to both vehicles.

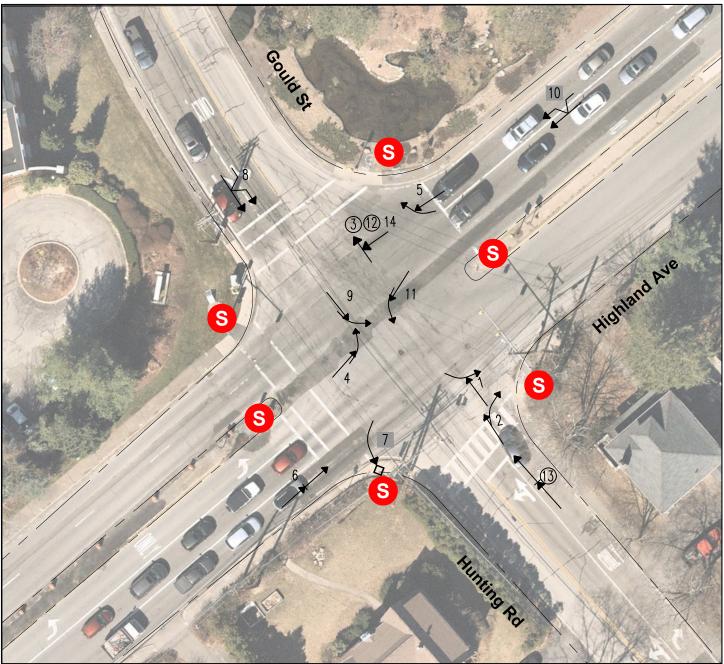

1 of 1 6/14/2022

Crash Data Summary ChartsHunting Rd at Kendrick St





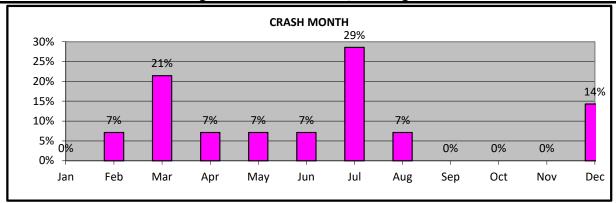


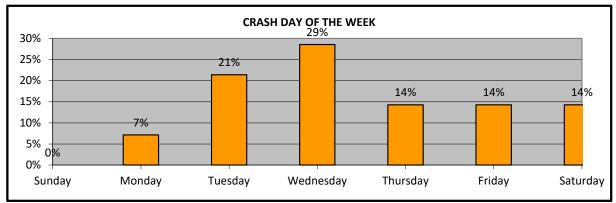


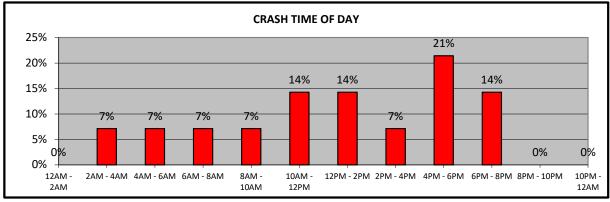
Crash Data Summary Charts Hunting Rd at Kendrick St

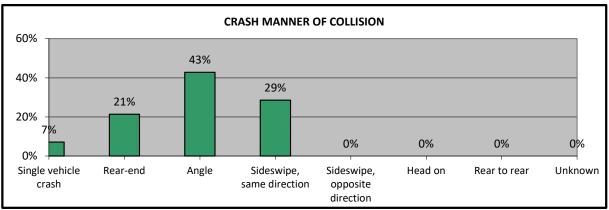
Crash Data Summary Table

Highland Ave at Gould St / Hunting Rd 2017 - 2019

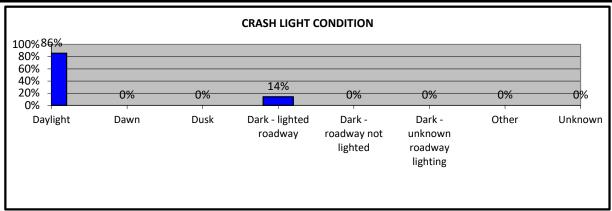

								2017 - 2019					
Crash Diagram			Time of										
Ref #	Crash Date	Crash Day	Day	Manner of Collision	Light Condition	Weather Condition	Road Surface	Driver Contributing Code	D1 Age	D2 Age	D3 Age	D4 Age	Comments
#	mm/dd/yy	Day	hh:mm	Type	Туре	Туре	Туре	Type	#	#	#	#	connents
1		Saturday	2:55 PM	Angle	Daylight		Dry	Unknown	Unknown	Unknown			Vehcile #1 was turning onto Highland Ave at green. Vehicle #2 took a right on red and crashed into the passenger side of Vehicle #1.
2	03/01/17	Wednesday	1:31 PM	Sideswipe, same direction	Daylight	Clear	Dry	Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #2 was turning right onto Highland Ave from Hunting Road. Vehicle #1 was behind Vehicle #2 and attempted to pass it o nthe rigth and turn right onto Highland Ave as well. Vehicle #2 sustained moderate damage to the left rear and side Vehicle #1 sustained minor damage to the right front corner. There were no reported injuries and both vehicles were able to be driver from the scene.
3	06/27/18	Wednesday	7:23 AM	Angle	Daylight	Clear	Dry	Disregarded traffic signs, signals, road markings	Unknown	Unknown			Vehicle #2 stated he got a green arrow to turn right from his traffic signal, but accidentaly continued straight and vehicle #1 drove into him. Air bag deployment in both vehicles. Witness stated that Vehicle #1's lane of traffic had a green light, all of a sudden vehicle #2 came across the intersection at a high rate of speed and vehicle 1 drove into vehicle 2.
4	12/09/19	Monday	11:10 AM	Sideswipe, same direction	Daylight	Clear	Dry	Failure to keep in proper lane or running off road	Unknown	Unknown			Vehicle #1 and Vehicle #2 were turning eastbound from Gould Street onto Highland Ave when Vehicle #1 did not stay in the proper lane, striking Vehicle #2 on the driver's side losest to the driver side door. Vehicle #1 had minor damage to the front right side bumper. Vehicle #2 had substantial damage to the left side mirror. No injuries were reported.
5	03/22/18	Thursday	4:40 PM	Rear-end	Daylight	Clear	Dry	Failed to yield right of way	Unknown	Unknown			Vehicle #2 was in the left lane on Gould St when she realized she needed to be on the right. Vehicle #2 was changing lanes and her vehicle struck Vehicle #1. Vehicle #2 sustained minor rear end damage, and Vehicle #1 sustained minor damage to the front fender and bumper.
6	05/04/18	Friday	6:00 PM	Rear-end	Daylight	Clear	Dry	Distracted	Unknown	Unknown			No injuries. Vehicle #1 was stopped at the lights on Highland Ave waiting to travel westbound on Highland Ave, when he was rear ended by vehicle #2.
7	07/17/18	Tuesday	2:03 AM	Single vehicle crash	Dark - lighted roadway	Clear	Dry	Inattention	Unknown	Unknown			Report of flashing lights possibly caused by a passing construction vehicle. Truck operator struck two signs along Highland Ave as well. The traffic signal was struck.
8	07/26/18	Thursday	8:20 AM	Sideswipe, same direction	Daylight	Clear	Dry	Failure to keep in proper lane or running off road	Unknown	Unknown			Vehicle #2 was stopped in traffic on Highland Ave facing eastbound. According to Vehicle #2, vehicle #1 drove by his stopped vehicle and sideswiped it, knocking his mirror off and damaging it. Vehicle #1 then turned onto Gould St and never stopped. No injuries were reported. Vehicle #2 had very minor damage.
9	12/12/18	Wednesday	12:11 PM	Angle	Daylight	Clear	Dry	No improper driving	Unknown	Unknown			Vehicle #2 was in the left lane, which is a left turn only lane. Vehicle #1 was in the right lane which has no turning restrictions. The light was red and when it turned green vehicle #1 turned left and vehicle #2 went straight ahead. Vehicle #2 struck vehicle #1 in the left rear and then fled the area on Highland Ave towards Netwon.
10	02/05/19	Tuesday	7:21 PM	Sideswipe, same direction	Dark - lighted roadway	Clear	Dry	No improper driving	Unknown	Unknown			Hit and run accident. Vehicle #2 stated that she was traveling west on Highland Ave, approaching the Gould St intersection, when Vehicle #1 sideswiped the right side of her vehicle as unkown vehicle #1 passed her on the right side. No one reported injury. Vehicle #2 sustained right side damage. Unknown vehicle #1 did not pull over after the accident and there is no information available for the vehicle make or operator.
11	03/23/19	Saturday	11:04 AM	Angle	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Vehicle #1 was facing southbound on Gould St attempting to make a left turn onto Highland Ave eastbound. Vehicle #1 started from inside travel lane of Gould Street. Vehicle #2 was facing on Gould St in the outside lane attempting to make a left turn onto Highland Ave eastbound. At some point during the turn the vehicles collided. The paint line delineating the traffic lanes at this intersection are faded. No injuries are reported. Vehicle #1 had minor right front bumper damage and vehicle #2 had minor left rear quarter panel damage (dents and scrape marks).

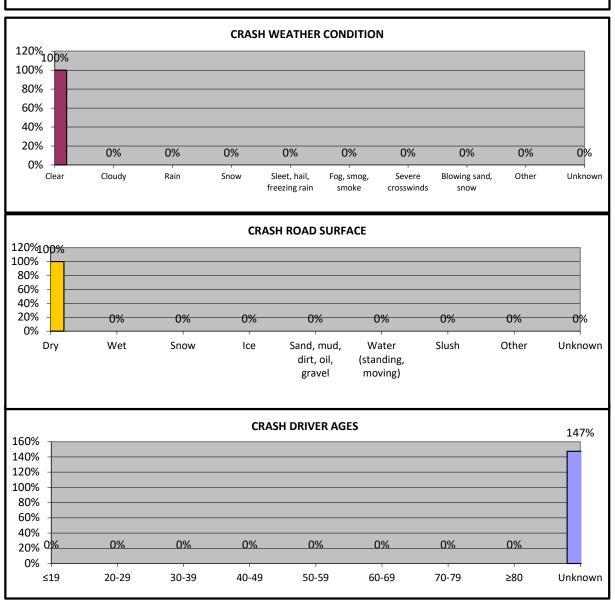

Crash Data Summary Table


Highland Ave at Gould St / Hunting Rd 2017 - 2019


Crash Diagram Ref #	Crash Date	Crash Day	Time of Day	Manner of Collision	Light Condition	Weather Condition	Road Surface	Driver Contributing Code	D1 Age	D2 Age	D3 Age	D4 Age	Comments
#	mm/dd/yy	Day	hh:mm	Туре	Туре	Туре	Туре	Туре	#	#	#	#	
12	04/30/19	Tuesday	4:49 AM	Angle	Daylight	Clear	Dry	Unknown	Unknown	Unknown			At 4:49 am, 2 car crash at intersection of Highland Ave and Gould St with no reported injuries. Vehicle #1 stated she was driving on Highland Ave (west) and turning right (north) onto Gould St when she struck vehicle #2. Some left shoulder pain of vehicle #2. Vehicle #2 was towed from the scene.
13	07/13/18	Friday	5:59 PM	Rear-end	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Vehicle #2 at the intersection of Highland Ave at Hunting Rd. Vehicle #1 rear ends Vehicle #2 while it is stopped. No injuries reported at the scene. Vehicles had significant damage but neither had to be towed from the scene. No injuries.
14	07/31/19	Wednesday	4:35 PM	Angle	Daylight	Clear	Dry	Unknown	Unknown	Unknown			Vehicle #1 was going southwest on Highland Ave. Vehicle #2 was driving towards her. Minimal damage on Vehicle #1. No injury.

Crash Data Summary Charts Highland Ave at Gould St / Hunting Rd





Crash Data Summary Charts Highland Ave at Gould St / Hunting Rd

Comment 12

Existing Site Trip Generation 557 Highland Avenue Needham, MA

ITE TRIP GENERATION WORKSHEET

(11th Edition, Updated 2021)

LANDUSE: Automated Car Wash

JOB NAME: 557 Highland Avenue

LANDUSE CODE: 948
SETTING/LOCATION:

CATION:

JOB NUMBER:

WEEKDAY

RATES:			T	otal Trip End	s	Indepen	dent Variable	e Range	Direct Distrib	
	# Studies	R^2	Average	Low	High	Average	Low	High	Enter	Exit
DAILY										
AM PEAK OF GENERATOR										
PM PEAK OF GENERATOR	2		11.66	8.35	16.63	5.00	4.39	6.59	50%	50%

 TRIPS:
 BY AVERAGE

 Total
 Enter
 Exi

 DAILY
 - - -

 AM PEAK OF GENERATOR
 - - -

PM PEAK OF GENERATOR

	BY AVERAGE		В	Y REGRESSIC	N
Total	Enter	Exit	Total	Enter	Exit
					-
54	27	27			

Independent Variable --- 1,000 Sq. Feet Gross Floor Area

4.60

FLOOR AREA (KSF):

SATURDAY

RATES:				Т	otal Trip End	s	Indepen	dent Variable	e Range	Direct	
		# Studies	R^2	Average	Low	High	Average	Low	High	Enter	Exit
	DAILY										
	PEAK OF GENERATOR	3		30.40	14.20	37.75	3.00	1.69	5.00	50%	50%

TRIPS: BY AVERAGE
Total Enter Exit
DAILY -- -- --

PEAK OF GENERATOR

AGE	B'	BY REGRESSION				
Exit	Total	Enter	Exit			
-			-			
70						

SUNDAY

RATES:				T	otal Trip End	ds	Indepen	dent Variable	e Range	Direct Distrib	
		# Studies	R^2	Average	Low	High	Average	Low	High	Enter	Exit
	DAILY										
	PEAK OF GENERATOR										

TRIPS:			BY AVERAGE	
		Total	Enter	Exit
	DAILY			

PEAK OF GENERATOR

BY REGRESSION					
Total	Enter	Exit			
		-			

Existing Site Trip Generation 557 Highland Avenue Needham, MA

ITE TRIP GENERATION WORKSHEET

PM PEAK OF GENERATOR

(11th Edition, Updated 2021)

LANDUSE: Automobile Sales (New)

LANDUSE CODE: 840

SETTING/LOCATION: General Urban/Suburban
JOB NAME: 557 Highland Avenue

JOB NUMBER:

Independent Variable --- 1,000 Sq. Feet Gross Floor Area

33

FLOOR AREA (KSF): 35.15

5.64

WEEKDAY

									Direc	uonai
RATES:			Т	otal Trip End	s	Indepen	dent Variable	Range	Distrib	oution
	# Studies	R^2	Average	Low	High	Average	Low	High	Enter	Exit
DAILY	18	0.80	27.84	14.98	41.78	36	15.00	77.00	50%	50%
AM PEAK OF GENERATOR	40	0.65	2.15	0.59	4.13	32	9.34	80.00	54%	46%

0.89

TRIPS:

DAILY AM PEAK OF GENERATOR PM PEAK OF GENERATOR

0.61

2.65

BY AVERAGE				
Total	Enter	Exit		
980	490	490		
76	41	35		
02	42	EO		

	BY REGRESSION				
	Total	Enter	Exit		
ſ	978	489	489		
١	75	40	34		
١	92	42	50		

9.34

80.00

SATURDAY

RATES:

	# Studies	R^2	Ave
DAILY	1		52
PEAK OF GENERATOR	4	0.92	4.

	Total Trip Ends		
Average	Low	High	
52.24	52.24	52.24	
4.02	1.41	5.64	

Independent Variable Range				
Average	Low	High		
33	33	33		
21	16	33		

Directional
Distribution
Enter Exit
50% 50%
50% 50%

Directional

54%

46%

TRIPS:

DAILY
PEAK OF GENERATOR

BY AVERAGE				
Total	Enter	Exit		
1,838	919	919		
141	71	71		

BY REGRESSION				
Total	Enter	Exit		
206	103	103		

<u>SUNDAY</u>

RATES:

	# Studies	R^2
DAILY	1	
PEAK OF GENERATOR		

	Total Trip Ends	
Average	Low	High
21.73	21.73	21.73

Independent Variable Range				
Average	Low	High	Ī	
33	33	33		

Directional			
Distrib	oution		
Enter	Exit		
50%	50%		
	Distrib Enter		

TRIPS:

	DAILY
PEAK OF	GENERATOR

	BY AVERAGE	
Total	Enter	Exit
764	382	382

В	Y REGRESSIC	ON
Total	Enter	Exit

Comment 14

2012-2016 American Community Survey - Work in Needham

Mode Share - Aggregate

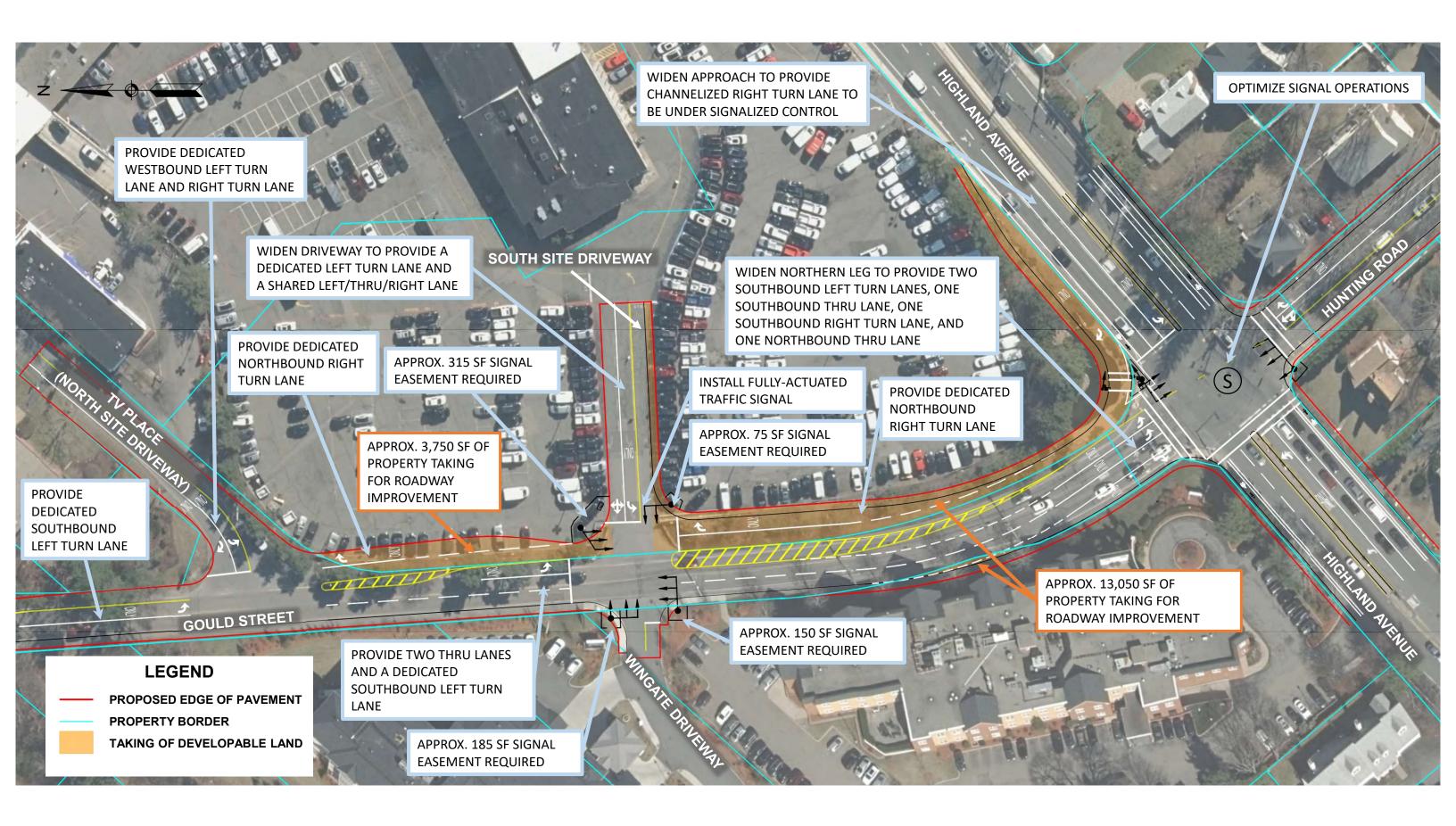
Mode	Total	Percent
Car, Truck, or Van - Drove Alone	16,089	82.5%
Carpool - In 2-Person Carpool	1,072	5.5%
Carpooled - In 3-Person Carpool	181	0.9%
Carpooled - In 4-Person Carpool	65	0.3%
Carpooled - In a 5 or 6 Person Carpool	20	0.1%
Carpooled - In a 7 or More Person Carpool	140	0.7%
Public Transportation	302	1.5%
Walked	287	1.5%
Bicycle	99	0.5%
Taxicab / Motorcycle / Other	71	0.4%
Worked at Home	1,185	6.1%
Total	19,511	100.0%

Note: Based on Journey to Work data from the US Census Bureau (2012-2016

Mode Share - Combined

Vehicle Occupancy Rate Vehicule

Mode	Total	Percent	Occupancy	Total
Vehicle	17,638	90.4%	1	16,160
Transit	302	1.5%	2	1,072
Bicycle	99	0.5%	3	181
Walked	287	1.5%	4	65
Worked at home	1,185	6.1%	5	10
Total	19,511	100.0%	6	10
			7	140
			VOR	1.15


Mode Share - For Comparison

Mode	Total	Percent	% Rounded
Vehicle	17,638	96.2%	95%
Transit	302	1.6%	2%
Bike	99	0.5%	1%
Walk	287	1.6%	2%
Total	18,326	100.0%	100.0%

Note: Worked at home not incldued in dataset

⁵⁻Year American Community Survey) for those who work in Needham.

Comment 19

Comments 19 and 21-24

	Intersection								
raffic Vol, veh/h	Int Delay, s/veh	2.1	2.1						
raffic Vol, veh/h	Movement	WBI	WBL	WBR	VBR	NBT	NBR	SBL	SBT
raffic Vol, veh/h									
uture Vol, veh/h 25 20 635 135 85 355 onflicting Peds, #/hr 0 0 0 0 0 0 0 ign Control Stop Stop Stop Free Cold acay Vehicles, %							135		
onflicting Peds, #/hr 0	Future Vol. veh/h								
Stop Stop Free Free Free Free Free Tree Tree									
T Channelized								-	
torage Length									
eh in Median Storage, # 0 - 0 - 0 - 0 0 rade, % 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 0 0 0		(0			_			
rade, % 0 - 0 - 0 - 0 0 - 0 0 95 95 91 91 91 eavy Vehicles, % 0 0 0 2 2 2 0 3 3 lvmt Flow 42 33 668 142 93 390 lajor/Minor Minor1 Major1 Major2 onflicting Flow All 1315 739 0 0 810 0 Stage 1 739						0			
eak Hour Factor 60 60 95 95 91 91 eavy Vehicles, % 0 0 2 2 0 3 Ivmt Flow 42 33 668 142 93 390 Iajor/Minor Minor1 Major1 Major2 0 0 810 0 Stage 1 739 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Beavy Vehicles, %									
Algor/Minor Minor Major Major									
Algor/Minor Minor1 Major1 Major2									
onflicting Flow All 1315 739 0 0 810 0 Stage 1 739 - - - - - Stage 2 576 - - - - - ritical Hdwy 6.4 6.2 - - 4.1 - ritical Hdwy Stg 1 5.4 - - - - - ritical Hdwy Stg 2 5.4 -	WWIIIL FIOW	42	42	33	JJ	000	142	93	390
onflicting Flow All 1315 739 0 0 810 0 Stage 1 739 -									
Stage 1 739 -	Major/Minor								
Stage 2 576 -							0	810	
ritical Hdwy Stg 1 5.4 4.1 ritical Hdwy Stg 1 5.4	Stage 1			-	-	-	-	-	-
ritical Hdwy Stg 1 5.4						-	-		-
ritical Hdwy Stg 2 5.4	Critical Hdwy			6.2	6.2	-	-	4.1	-
ritical Hdwy Stg 2 5.4	Critical Hdwy Stg 1	5.4	5.4	-	-	-	-	-	-
ot Cap-1 Maneuver 176 421 - - 825 - Stage 1 476 - - - - - Stage 2 566 - - - - - Iatoon blocked, % - - - - - - Iov Cap-1 Maneuver 156 421 - - 825 - Iov Cap-2 Maneuver 156 -	Critical Hdwy Stg 2	5.4	5.4	-	-	-	-	-	-
Stage 1 476 -	Follow-up Hdwy	3.5	3.5	3.3	3.3	-	-	2.2	-
Stage 1 476 -	Pot Cap-1 Maneuver	176	176	421	421	-	-	825	-
Stage 2 566 - - - - - latoon blocked, % - - - - - - lov Cap-1 Maneuver 156 421 - - 825 - lov Cap-2 Maneuver 156 - - - - - - - Stage 1 476 -			476	-	-	-	-	-	-
Altoon blocked, %				-	-	-	-	-	-
Nov Cap-1 Maneuver	Platoon blocked, %					-	_		-
Note		r 156	156	421	421	-	_	825	_
Stage 1 476 -						-			
Stage 2 502 -						_	_	_	_
pproach WB NB SB CM Control Delay, s 26.5 0 1.9 CM LOS D 1.9 1.9 Ilinor Lane/Major Mvmt NBT NBR WBLn1 WBLn2 SBL apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - - E B A				_	_	_	_		_
CM Control Delay, s 26.5 0 1.9 CM LOS D 1.9 linor Lane/Major Mvmt NBT NBR WBLn1 WBLn2 SBL apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - - E B A	Olage 2	302	302						
CM Control Delay, s 26.5 0 1.9 CM LOS D 1.9 linor Lane/Major Mvmt NBT NBR WBLn1 WBLn2 SBL apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - - E B A	A	VA/F	WD			ND		CD	
CM LOS D linor Lane/Major Mvmt NBT NBR WBLn1 WBLn2 SBL apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - - E B A									
Ilinor Lane/Major Mvmt						U		1.9	
apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - E B A	HCM LOS		D						
apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - E B A									
apacity (veh/h) - - 156 421 825 CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - - E B A	Minor Lane/Major Mvmt	mt		NBT	NBT	NBR	WBLn1	WBLn2	SBL
CM Lane V/C Ratio - - 0.267 0.079 0.113 CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - E B A	Capacity (veh/h)			-	-			421	825
CM Control Delay (s) - - 36.3 14.3 9.9 CM Lane LOS - E B A	HCM Lane V/C Ratio			-	-	-			
CM Lane LOS E B A				_	-	-			
	HCM Lane LOS	7		-	-	_			
	HCM 95th %tile Q(veh)	h)		_	-	-	1	0.3	0.4

11. Gould St & Will	ugate D	wy/iviuz	i Fora	Dwy									Timing Plan. Weekday Morning
	٠	→	•	•	←	•	4	†	<i>></i>	/	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	4			4	7	7	∱ }		
Traffic Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Future Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	12	12	12	13	13	12	12	12	12	12	12	
Storage Length (ft)	0		0	0		0	0		100	150		0	
Storage Lanes	0		0	1		0	0		1	1		0	
Taper Length (ft)	25			25			25			25			
Right Turn on Red			Yes			Yes			Yes			Yes	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		151			225			398			315		
Travel Time (s)		3.4			5.1			9.0			7.2		
Confl. Bikes (#/hr)									1				
Peak Hour Factor	0.63	0.63	0.63	0.90	0.90	0.90	0.90	0.90	0.90	0.83	0.83	0.83	
Shared Lane Traffic (%)				34%									
Lane Group Flow (vph)	0	10	0	51	50	0	0	850	428	36	424	0	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2	. 0		6		
Permitted Phases	•	•					2	_	2	6			
Detector Phase	4	4		8	8		2	2	2	6	6		
Switch Phase	•	•		J	J		_		_	•	· ·		
Minimum Initial (s)	6.0	6.0		6.0	6.0		10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	27.0	27.0		11.0	11.0		15.0	15.0	15.0	23.0	23.0		
Total Split (s)	27.0	27.0		13.0	13.0		95.0	95.0	95.0	95.0	95.0		
Total Split (%)	20.0%	20.0%		9.6%	9.6%		70.4%	70.4%	70.4%	70.4%	70.4%		
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	1.0	0.0		0.0	0.0		1.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lead/Lag		7.0		7.0	7.0			7.0	7.0	7.0	7.0		
Lead-Lag Optimize?													
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	C-Min	C-Min		
v/c Ratio	None	0.07		0.43	0.36		O-IVIII1	0.55	0.32	0.08	0.14		
Control Delay		0.8		70.6	44.5			7.1	3.2	5.8	4.0		
Queue Delay		0.0		0.0	0.0			4.5	1.2	0.0	0.0		
Total Delay		0.0		70.6	44.5			11.6	4.5	5.8	4.0		
Queue Length 50th (ft)		0.0		46	25			153	22	3.0	20		
Queue Length 95th (ft)		0		90	68			m273	m78	24	88		
Internal Link Dist (ft)		71		30	145			318	11170	24	235		
Turn Bay Length (ft)		7.1			140			310	100	150	230		
Base Capacity (vph)		313		128	147			1550	1339	447	2978		
Starvation Cap Reductn		0		120	0			611	669	447	2976		
Spillback Cap Reductn		0		0	0			0	009	0	0		
Storage Cap Reductin		0		0	0			0	0	0	0		
Reduced v/c Ratio		0.03		0.40	0.34			0.91	0.64	0.08	0.14		
		0.03		0.40	0.34			0.91	0.04	0.06	0.14		
latana attan O													

Intersection Summary

Area Type:

Cycle Length: 135 Actuated Cycle Length: 135

Offset: 15 (11%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 80

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

11. Gould St & Williag	gate Dv	vy/iviuz	roid	Dwy									riming Plan. Weekday Morning
	۶	→	•	•	+	•	4	†	/	/	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		ř	4			ર્ન	7	ř	↑ ↑		
Traffic Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Future Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	12	12	13	13	12	12	12	12	12	12	
Total Lost time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lane Util. Factor		1.00		0.95	0.95			1.00	1.00	1.00	0.95		
Frpb, ped/bikes		1.00		1.00	1.00			1.00	0.98	1.00	1.00		
Flpb, ped/bikes		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Frt		0.89		1.00	0.93			1.00	0.85	1.00	1.00		
Flt Protected		0.99		0.95	0.97			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		1645		1681	1663			1861	1551	1770	3537		
Flt Permitted		0.99		0.95	0.97			0.99	1.00	0.29	1.00		
Satd. Flow (perm)		1645		1681	1663			1841	1551	531	3537		
Peak-hour factor, PHF	0.63	0.63	0.63	0.90	0.90	0.90	0.90	0.90	0.90	0.83	0.83	0.83	
Adj. Flow (vph)	2	0.00	8	78	1	22	17	833	428	36	422	2	
RTOR Reduction (vph)	0	10	0	0	21	0	0	0	40	0	0	0	
Lane Group Flow (vph)	0	0	0	51	29	0	0	850	388	36	424	0	
Confl. Bikes (#/hr)	U	U	U	JI	23	U	U	030	1	30	424	U	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	3piit 4	4		Split 8	8		Fellii	2	Fellil	Fellii	6		
Permitted Phases	4	4		0	0		2		2	6	U		
Actuated Green, G (s)		5.8		8.3	8.3		2	108.9	108.9	108.9	108.9		
Effective Green, g (s)		5.8		8.3	8.3			108.9	108.9	108.9	108.9		
Actuated g/C Ratio		0.04		0.06	0.06			0.81	0.81	0.81	0.81		
Clearance Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
()		3.0		3.0	3.0			3.0	3.0	3.0	3.0		
Vehicle Extension (s)													
Lane Grp Cap (vph)		70		103	102			1485	1251	428	2853		
v/s Ratio Prot		c0.00		c0.03	0.02			0.40	0.05	0.07	0.12		
v/s Ratio Perm		0.04		0.50	2.00			c0.46	0.25	0.07	0.45		
v/c Ratio		0.01		0.50	0.29			0.57	0.31	0.08	0.15		
Uniform Delay, d1		61.8		61.3	60.5			4.7	3.4	2.7	2.9		
Progression Factor		1.00		1.00	1.00			0.98	1.14	1.00	1.00		
Incremental Delay, d2		0.0		3.7	1.6			0.4	0.2	0.4	0.1		
Delay (s)		61.9		65.0	62.1			5.0	4.0	3.1	3.0		
Level of Service		Е		Е	Е			Α	Α	Α	Α		
Approach Delay (s)		61.9			63.6			4.7			3.0		
Approach LOS		Е			Е			Α			Α		
Intersection Summary													
HCM 2000 Control Delay			7.8	H	CM 2000	Level of S	ervice		Α				
HCM 2000 Volume to Capacity	ratio		0.54										
Actuated Cycle Length (s)			135.0	S	um of lost	time (s)			12.0				
Intersection Capacity Utilization	n		67.0%	IC	U Level o	f Service			С				
Analysis Period (min)			15										
0 111 11 0													

	•	→	`	•	←	4	•	<u>†</u>	<u> </u>	\		4		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	
Lane Configurations	*	<u></u>		ሻ	4			4		022	4	05.1	~~	
Traffic Volume (vph)	225	220	30	40	190	60	30	555	60	25	305	105		
Future Volume (vph)	225	220	30	40	190	60	30	555	60	25	305	105		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	120	1300	0	100	1300	0	0	1300	0	0	1300	0		
Storage Lanes	120		0	100		0	0		0	0		0		
Taper Length (ft)	25		U	25		U	25		U	25		U		
Right Turn on Red	23		No	23		No	23		No	20		No		
Link Speed (mph)		30	INU		30	INU		30	INU		30	INU		
		318			371			476			549			
Link Distance (ft)								-						
Travel Time (s)	4.4	7.2			8.4	4.4		10.8	00	00	12.5			
Confl. Peds. (#/hr)	14	0.04	4	4	0.07	14	4	0.07	22	22	0.00	4		
Peak Hour Factor	0.94	0.94	0.94	0.87	0.87	0.87	0.87	0.87	0.87	0.96	0.96	0.96		
Heavy Vehicles (%)	4%	2%	4%	0%	2%	0%	4%	4%	0%	0%	7%	5%		
Bus Blockages (#/hr)	0	0	0	0	0	0	2	2	2	0	0	0		
Parking (#/hr)							0	0	0	0	0	0		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	239	266	0	46	287	0	0	741	0	0	453	0		
Turn Type	D.P+P	NA		Perm	NA		Perm	NA		Perm	NA			
Protected Phases	1	12			2			3			3		9	
Permitted Phases	2	2		2			3			3				
Detector Phase	1	12		2	2		3	3		3	3			
Switch Phase														
Minimum Initial (s)	6.0			10.0	10.0		10.0	10.0		10.0	10.0		7.0	
Minimum Split (s)	11.0			15.0	15.0		15.0	15.0		15.0	15.0		20.0	
Total Split (s)	15.0			35.0	35.0		60.0	60.0		60.0	60.0		20.0	
Total Split (%)	11.5%			26.9%	26.9%		46.2%	46.2%		46.2%	46.2%		15%	
Yellow Time (s)	4.0			4.0	4.0		4.0	4.0		4.0	4.0		2.0	
All-Red Time (s)	1.0			1.0	1.0		1.0	1.0		1.0	1.0		0.0	
Lost Time Adjust (s)	0.0			0.0	0.0			0.0			0.0			
Total Lost Time (s)	5.0			5.0	5.0			5.0			5.0			
Lead/Lag	Lead			Lag	Lag			0.0			0.0			
Lead-Lag Optimize?	Loud			Lug	Lug									
Recall Mode	None			None	None		Min	Min		Min	Min		None	
v/c Ratio	0.88	0.42		0.20	0.77		IVIIII	0.91		IVIIII	0.60		TTOTIC	
Control Delay	60.4	29.2		38.0	55.1			42.6			24.5			
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0			
Total Delay	60.4	29.2		38.0	55.1			42.6			24.5			
•		128			176			42.6			24.5 189			
Queue Length 50th (ft)	114			25	313									
Queue Length 95th (ft)	#258	252		65				#913			453			
Internal Link Dist (ft)	400	238		400	291			396			469			
Turn Bay Length (ft)	120			100	=00			044			-0:			
Base Capacity (vph)	273	778		320	508			811			761			
Starvation Cap Reductn	0	0		0	0			0			0			
Spillback Cap Reductn	0	0		0	0			0			0			
Storage Cap Reductn	0	0		0	0			0			0			
Reduced v/c Ratio	0.88	0.34		0.14	0.56			0.91			0.60			

Intersection Summary

Other

Area Type: O
Cycle Length: 130
Actuated Cycle Length: 106.5
Natural Cycle: 130

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 12: Highland Ave & West St

D

49.0

Intersection Summary				
HCM 2000 Control Delay	37.9	HCM 2000 Level of Service	D	
HCM 2000 Volume to Capacity ratio	0.88			
Actuated Cycle Length (s)	107.9	Sum of lost time (s)	17.0	
Intersection Capacity Utilization	81.4%	ICU Level of Service	D	
Analysis Period (min)	15			
0.111 11 0				

D

40.3

В

В

19.7

c Critical Lane Group

Level of Service

Approach LOS

Approach Delay (s)

C

43.4

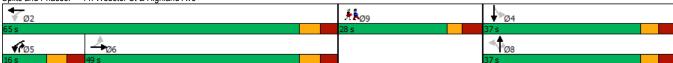
	٠	→	•	•	—	•	•	†	<u> </u>	\	+	4		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	
Lane Configurations	ሻ	f)		ሻ	£			4	7		413			
Traffic Volume (vph)	35	595	15	125	460	60	20	315	405	85	140	30		
Future Volume (vph)	35	595	15	125	460	60	20	315	405	85	140	30		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	150		0	150		0	0		150	0		200		
Storage Lanes	1		0	1		0	0		1	0		1		
Taper Length (ft)	25			25			25		•	25		•		
Right Turn on Red			Yes			No			Yes			No		
Link Speed (mph)		30	100		30	110		30	100		30	140		
Link Distance (ft)		1325			691			391			2983			
Travel Time (s)		30.1			15.7			8.9			67.8			
Confl. Peds. (#/hr)	7	00.1			10.7	7	1	0.0	7	7	07.0	1		
Confl. Bikes (#/hr)	•		1							'				
Peak Hour Factor	0.94	0.94	0.94	0.88	0.88	0.88	0.87	0.87	0.87	0.88	0.88	0.88		
Heavy Vehicles (%)	4%	3%	0.34	0.00	2%	4%	1%	1%	0.07	0.00	1%	0.00		
Shared Lane Traffic (%)	7/0	3 /0	0 70	0 70	2 /0	770	1 /0	1 /0	0 70	0 70	1 /0	0 70		
Lane Group Flow (vph)	37	649	0	142	591	0	0	385	466	0	290	0		
Turn Type	Perm	NA	U	pm+pt	NA	U	Perm	NA	pm+ov	Perm	NA	U		
Protected Phases	I CIIII	6		рин - рг	2		I CIIII	8	5	I CIIII	4		9	
Permitted Phases	6	U		2			8	U	8	4	-		3	
Detector Phase	6	6		5	2		8	8	5	4	4			
Switch Phase	0	U		5			0	0	J	4	4			
Minimum Initial (s)	10.0	10.0		6.0	10.0		6.0	6.0	6.0	6.0	6.0		7.0	
Minimum Split (s)	17.5	17.5		13.5	17.5		12.5	12.5	13.5	12.5	12.5		28.0	
Total Split (s)	49.0	49.0		16.0	65.0		37.0	37.0	16.0	37.0	37.0		28.0	
Total Split (%)	37.7%	37.7%		12.3%	50.0%		28.5%	28.5%	12.3%	28.5%	28.5%		22%	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.5	3.5	4.0	3.5	3.5		3.0	
All-Red Time (s)	3.5	3.5		3.5	3.5		3.0	3.0	3.5	3.0	3.0		4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		3.0	0.0	0.0	3.0	0.0		4.0	
, (,	7.5	7.5		7.5	7.5			6.5	7.5		6.5			
Total Lost Time (s)					1.5			0.5			0.5			
Lead/Lag Lead-Lag Optimize?	Lag	Lag		Lead					Lead					
	MC-	N 45		Mana	Min		Mana	Mana	Mana	Mana	None		Mana	
Recall Mode	Min	Min		None			None	None	None	None			None	
v/c Ratio	0.12	0.87		0.60	0.58			0.82	0.62		0.90dl			
Control Delay	25.4	44.6		26.6	20.6			52.2	11.5		40.4			
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0			
Total Delay	25.4	44.6		26.6	20.6			52.2	11.5		40.4			
Queue Length 50th (ft)	14	366		39	223			223	51		82			
Queue Length 95th (ft)	52	#861		#152	531			#474	177		164			
Internal Link Dist (ft)	450	1245		450	611			311	450		2903			
Turn Bay Length (ft)	150			150	46.15				150					
Base Capacity (vph)	311	743		237	1019			537	747		566			
Starvation Cap Reductn	0	0		0	0			0	0		0			
Spillback Cap Reductn	0	0		0	0			0	0		0			
Storage Cap Reductn	0	0		0	0			0	0		0			
Reduced v/c Ratio	0.12	0.87		0.60	0.58			0.72	0.62		0.51			

Intersection Summary

Area Type:

Cycle Length: 130

Actuated Cycle Length: 104.2 Natural Cycle: 130


Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 14: Webster St & Highland Ave

	۶	-	\rightarrow	•	←	•	1	†	/	>	ļ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	ሻ	^		ሻ	ĵ.			ર્ન	7		€Î}		
Traffic Volume (vph)	35	595	15	125	460	60	20	315	405	85	140	30	
-uture Volume (vph)	35	595	15	125	460	60	20	315	405	85	140	30	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.5	7.5		7.5	7.5			6.5	7.5		6.5		
ane Util. Factor	1.00	1.00		1.00	1.00			1.00	1.00		0.95		
rpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	0.98		1.00		
lpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00		
-rt	1.00	1.00		1.00	0.98			1.00	0.85		0.98		
FIt Protected	0.95	1.00		0.95	1.00			1.00	1.00		0.98		
Satd. Flow (prot)	1729	1839		1805	1821			1875	1578		3453		
Flt Permitted	0.42	1.00		0.10	1.00			0.96	1.00		0.54		
Satd. Flow (perm)	772	1839		184	1821			1811	1578		1907		
Peak-hour factor, PHF	0.94	0.94	0.94	0.88	0.88	0.88	0.87	0.87	0.87	0.88	0.88	0.88	
Adj. Flow (vph)	37	633	16	142	523	68	23	362	466	97	159	34	
RTOR Reduction (vph)	0	1	0	0	0	0	0	0	224	0	0	0	
ane Group Flow (vph)	37	648	0	142	591	0	0	385	242	0	290	0	
Confl. Peds. (#/hr)	7	3.0			J	7	1	300	7	7		1	
Confl. Bikes (#/hr)	•		1			•	•		•	•		•	
Heavy Vehicles (%)	4%	3%	0%	0%	2%	4%	1%	1%	0%	0%	1%	0%	
Furn Type	Perm	NA	070	pm+pt	NA	.,,	Perm	NA	pm+ov	Perm	NA	0,0	
Protected Phases	1 01111	6		5	2		1 01111	8	5	1 01111	4		
Permitted Phases	6	U		2	_		8	U	8	4	7		
Actuated Green, G (s)	42.2	42.2		58.3	58.3			27.2	35.8	•	27.2		
Effective Green, g (s)	42.2	42.2		58.3	58.3			27.2	35.8		27.2		
Actuated g/C Ratio	0.38	0.38		0.53	0.53			0.25	0.33		0.25		
Clearance Time (s)	7.5	7.5		7.5	7.5			6.5	7.5		6.5		
/ehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0		
ane Grp Cap (vph)	296	706		224	966			448	514		471		
//s Ratio Prot	290	c0.35		0.05	c0.32			440	0.04		4/1		
//s Ratio Perm	0.05	60.55		0.03	60.52			c0.21	0.04		0.15		
//c Ratio	0.03	0.92		0.29	0.61			0.86	0.12		0.15 0.90dl		
Jniform Delay, d1	21.9	32.2		21.2	17.9			39.5	29.5		36.7		
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00		
ncremental Delay, d2	0.2	16.8		5.8	1.00			15.1	0.7		2.4		
Delay (s)	22.1	49.1		27.0	19.1			54.6	30.2		39.1		
Level of Service	22.1 C	49.1 D		27.0 C	19.1 B			34.0 D	30.2 C		39.1 D		
Approach Delay (s)	U	47.6		U	20.6			41.2	U		39.1		
Approach LOS		47.0 D			20.6 C			41.2 D			39.1 D		
ntersection Summary													
ICM 2000 Control Delay			36.8	Н	CM 2000	Level of S	ervice		D				
HCM 2000 Volume to Capacity	ratio		0.87										
Actuated Cycle Length (s)			109.9	S	um of lost	time (s)			28.5				
ntersection Capacity Utilization			87.5%			of Service			Е				
Analysis Period (min)			15										
dl Defacto Left Lane. Recode	with 1 th	nough lane	as a left	lane.									

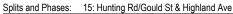
c Critical Lane Group

	٠	→	•	•	←	•	1	†	<i>></i>	/	ļ	4			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	Ø10	Ø11
Lane Configurations	ሻ	↑ ↑		ሻ	∱ Љ			ર્ન	7	1,4	f)				
Traffic Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45			
Future Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	175		0	165		400	0		150	200		200			
Storage Lanes	1		0	1		0	0		1	1		0			
Taper Length (ft)	25			25			25			25					
Right Turn on Red			Yes			Yes			Yes			Yes			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		345			745			3028			398				
Travel Time (s)		7.8			16.9			68.8			9.0				
Confl. Peds. (#/hr)	1		1	1		1									
Confl. Bikes (#/hr)									1						
Peak Hour Factor	0.87	0.87	0.87	0.92	0.92	0.92	0.88	0.88	0.88	0.94	0.94	0.94			
Heavy Vehicles (%)	3%	2%	0%	0%	5%	1%	0%	1%	0%	3%	2%	0%			
Shared Lane Traffic (%)															
Lane Group Flow (vph)	172	1040	0	49	1484	0	0	301	273	309	144	0			
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA				
Protected Phases	1	6		5	2		3	3	5	4	4		9	10	11
Permitted Phases									3						
Detector Phase	1	6		5	2		3	3	5	4	4				
Switch Phase															
Minimum Initial (s)	6.0	10.0		6.0	10.0		6.0	6.0	6.0	6.0	6.0		1.0	1.0	1.0
Minimum Split (s)	12.0	20.0		12.0	25.0		12.0	12.0	12.0	29.5	29.5		3.0	3.0	3.0
Total Split (s)	16.0	50.5		24.0	58.5		28.5	28.5	24.0	26.0	26.0		3.0	3.0	3.0
Total Split (%)	11.9%	37.4%		17.8%	43.3%		21.1%	21.1%	17.8%	19.3%	19.3%		2%	2%	2%
Yellow Time (s)	3.0	4.0		3.0	4.0		3.5	3.5	3.0	3.5	3.5		2.0	2.0	2.0
All-Red Time (s)	3.0	1.0		3.0	1.0		2.5	2.5	3.0	2.5	2.5		0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0				
Lead/Lag	Lead			Lead			Lead	Lead	Lead				Lag	Lag	Lag
Lead-Lag Optimize?															
Recall Mode	None	Min		None	Min		Min	Min	None	C-Min	C-Min		None	None	None
v/c Ratio	0.96	0.66		0.42	1.00			0.96	0.61	0.66	0.56				
Control Delay	117.3	33.3		70.2	56.2			98.4	22.8	68.6	63.4				
Queue Delay	15.8	0.0		0.0	2.4			0.0	0.0	0.0	0.0				
Total Delay	133.2	33.3		70.2	58.6			98.4	22.8	68.6	63.4				
Queue Length 50th (ft)	153	363		42	587			265	93	136	107				
Queue Length 95th (ft)	#330	503		83	#797			#433	136	180	166				
Internal Link Dist (ft)		265			665			2948			318				
Turn Bay Length (ft)	175			165					150	200					
Base Capacity (vph)	179	1574		240	1479			312	548	509	280				
Starvation Cap Reductn	0	0		0	0			0	0	0	0				
Spillback Cap Reductn	11	0		0	13			0	0	0	0				
Storage Cap Reductn	0	0		0	0			0	0	0	0				
Reduced v/c Ratio	1.02	0.66		0.20	1.01			0.96	0.50	0.61	0.51				

Intersection Summary

Area Type: Other

Cycle Length: 135


Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 4:SBTL, Start of Green


Natural Cycle: 145

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	←	•	1	†	<i>></i>	/	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	Ť	↑ 1≽		¥	∱ }			ર્ન	7	44	ĵ»		
Traffic Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45	
Future Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	0.97	1.00		
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00	0.99	1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Frt	1.00	1.00		1.00	0.92			1.00	0.85	1.00	0.95		
Flt Protected	0.95	1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1752	3530		1805	3178			1874	1600	3400	1781		
Flt Permitted	0.95	1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1752	3530		1805	3178			1874	1600	3400	1781		
Peak-hour factor, PHF	0.87	0.87	0.87	0.92	0.92	0.92	0.88	0.88	0.88	0.94	0.94	0.94	
Adj. Flow (vph)	172	1023	17	49	658	826	28	273	273	309	96	48	
RTOR Reduction (vph)	0	1	0	0	159	0	0	0	74	0	14	0	
Lane Group Flow (vph)	172	1039	0	49	1325	0	0	301	199	309	130	0	
Confl. Peds. (#/hr)	1		1	1		1							
Confl. Bikes (#/hr)									1				
Heavy Vehicles (%)	3%	2%	0%	0%	5%	1%	0%	1%	0%	3%	2%	0%	
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA		
Protected Phases	1	6		5	2		3	3	5	4	4		
Permitted Phases									3				
Actuated Green, G (s)	13.8	60.2		8.9	58.2			22.5	31.4	17.5	17.5		
Effective Green, g (s)	13.8	60.2		8.9	58.2			22.5	31.4	17.5	17.5		
Actuated g/C Ratio	0.10	0.45		0.07	0.43			0.17	0.23	0.13	0.13		
Clearance Time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0		
Vehicle Extension (s)	2.0	2.0		2.0	2.0			2.0	2.0	2.0	2.0		
Lane Grp Cap (vph)	179	1574		118	1370			312	372	440	230		
v/s Ratio Prot	c0.10	0.29		0.03	c0.42			c0.16	0.04	c0.09	0.07		
v/s Ratio Perm									0.09				
v/c Ratio	0.96	0.66		0.42	0.97			0.96	0.53	0.70	0.57		
Uniform Delay, d1	60.3	29.4		60.6	37.5			55.9	45.4	56.3	55.2		
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.12	1.14		
Incremental Delay, d2	55.3	0.8		0.9	16.8			40.9	0.7	9.0	9.6		
Delay (s)	115.7	30.2		61.4	54.3			96.8	46.1	71.7	72.7		
Level of Service	F	С		Е	D			F	D	Е	Е		
Approach Delay (s)		42.3			54.5			72.7			72.1		
Approach LOS		D			D			Е			Е		
Intersection Summary													
HCM 2000 Control Delay			55.5	H	CM 2000	Level of S	ervice		Е				
HCM 2000 Volume to Capacit	y ratio		0.95										
Actuated Cycle Length (s)	,		135.0	Sı	um of lost	time (s)			27.0				
Intersection Capacity Utilizatio	n		91.0%		U Level c	. ,			E				
Analysis Period (min)			15										
c Critical Lane Group													

	۶	→	•	•	←	1	1	†	/	/	 	1			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø1	Ø5	
Lane Configurations		^	7		↑ 1≽		ሻ	4			4				
Traffic Volume (vph)	5	1170	1005	0	965	15	175	0	70	5	5	10			
Future Volume (vph)	5	1170	1005	0	965	15	175	0	70	5	5	10			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	0		0	0		0	75		0	0		0			
Storage Lanes	0		1	0		0	1		0	0		0			
Taper Length (ft)	25			25			25			25					
Right Turn on Red			Yes			Yes			Yes			Yes			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		176			681			500			267				
Travel Time (s)		4.0			15.5			11.4			6.1				
Confl. Peds. (#/hr)			1	1					8	8					
Confl. Bikes (#/hr)			2												
Peak Hour Factor	0.88	0.88	0.88	0.95	0.95	0.95	0.91	0.91	0.91	0.39	0.39	0.39			
Heavy Vehicles (%)	0%	4%	2%	0%	5%	0%	11%	0%	6%	33%	0%	0%			
Shared Lane Traffic (%)							28%								
Lane Group Flow (vph)	0	1336	1142	0	1032	0	138	131	0	0	52	0			
Turn Type		NA	pm+ov		NA		Split	NA		Split	NA				
Protected Phases		6	. 8		2		. 8	8		4	4		1	5	
Permitted Phases			6												
Detector Phase		6	8		2		8	8		4	4				
Switch Phase															
Minimum Initial (s)		10.0	6.0		10.0		6.0	6.0		6.0	6.0		1.0	1.0	
Minimum Split (s)		25.0	20.0		20.0		20.0	20.0		29.0	29.0		3.0	3.0	
Total Split (s)		38.0	23.0		38.0		23.0	23.0		29.0	29.0		3.0	3.0	
Total Split (%)		40.9%	24.7%		40.9%		24.7%	24.7%		31.2%	31.2%		3%	3%	
Yellow Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0		2.0	2.0	
All-Red Time (s)		1.0	2.0		1.0		2.0	2.0		2.0	2.0		0.0	0.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0			0.0				
Total Lost Time (s)		5.0	6.0		5.0		6.0	6.0			6.0				
Lead/Lag		Lag			Lag								Lead	Lead	
Lead-Lag Optimize?															
Recall Mode		C-Min	None		C-Min		None	None		None	None		None	None	
v/c Ratio		1.68	0.81		0.56		0.44	0.33			0.27				
Control Delay		334.2	7.4		19.2		36.1	9.9			24.3				
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0				
Total Delay		334.2	7.4		19.2		36.1	9.9			24.3				
Queue Length 50th (ft)		~611	11		203		73	7			15				
Queue Length 95th (ft)		#806	#103		354		140	58			10				
Internal Link Dist (ft)		96			601			420			187				
Turn Bay Length (ft)							75								
Base Capacity (vph)		794	1419		1840		347	421			419				
Starvation Cap Reductn		0	0		0		0	0			0				
Spillback Cap Reductn		0	0		0		0	0			0				
Storage Cap Reductn		0	0		0		0	0			0				
Reduced v/c Ratio		1.68	0.80		0.56		0.40	0.31			0.12				

Area Type: Other

Cycle Length: 93

Actuated Cycle Length: 93

Offset: 0 (0%), Referenced to phase 2:WBT and 6:EBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

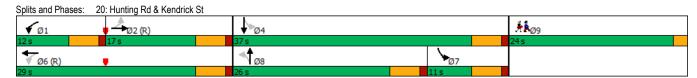
Splits and Phases: 18: 1st Ave/Driveway & Highland Ave

10. 13t AVC/DITVEWay 0	<u> , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	iiaiia 7	110										Tilling Flatt. Weekday Morting
	۶	→	•	•	←	•	4	†	/	/	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	7		∱ }		¥	4			4		
Traffic Volume (vph)	5	1170	1005	0	965	15	175	0	70	5	5	10	
Future Volume (vph)	5	1170	1005	0	965	15	175	0	70	5	5	10	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0	6.0		5.0		6.0	6.0			6.0		
Lane Util. Factor		0.95	1.00		0.95		0.95	0.95			1.00		
Frpb, ped/bikes		1.00	0.98		1.00		1.00	0.99			1.00		
Flpb, ped/bikes		1.00	1.00		1.00		1.00	1.00			1.00		
Frt		1.00	0.85		1.00		1.00	0.91			0.93		
Flt Protected		1.00	1.00		1.00		0.95	0.98			0.99		
Satd. Flow (prot)		3471	1557		3433		1545	1472			1617		
Flt Permitted		0.95	1.00		1.00		0.95	0.98			0.99		
Satd. Flow (perm)		3300	1557		3433		1545	1472			1617		
Peak-hour factor, PHF	0.88	0.88	0.88	0.95	0.95	0.95	0.91	0.91	0.91	0.39	0.39	0.39	
Adj. Flow (vph)	6	1330	1142	0	1016	16	192	0	77	13	13	26	
RTOR Reduction (vph)	0	0	281	0	1	0	0	93	0	0	24	0	
Lane Group Flow (vph)	0	1336	862	0	1031	0	138	38	0	0	28	0	
Confl. Peds. (#/hr)			1	1					8	8			
Confl. Bikes (#/hr)			2										
Heavy Vehicles (%)	0%	4%	2%	0%	5%	0%	11%	0%	6%	33%	0%	0%	
Turn Type		NA	pm+ov		NA		Split	NA		Split	NA		
Protected Phases		6	8		2		8	8		4	4		
Permitted Phases			6										
Actuated Green, G (s)		48.6	67.5		48.6		18.9	18.9			8.5		
Effective Green, g (s)		48.6	67.5		48.6		18.9	18.9			8.5		
Actuated g/C Ratio		0.52	0.73		0.52		0.20	0.20			0.09		
Clearance Time (s)		5.0	6.0		5.0		6.0	6.0			6.0		
Vehicle Extension (s)		2.0	2.0		2.0		2.0	2.0			2.0		
Lane Grp Cap (vph)		1724	1230		1794		313	299			147		
v/s Ratio Prot			c0.14		0.30		0.09	0.03			c0.02		
v/s Ratio Perm		c0.40	0.41		0.00		0.00	0.00			00.02		
v/c Ratio		0.77	0.70		0.57		0.44	0.13			0.19		
Uniform Delay, d1		17.8	7.1		15.1		32.4	30.3			39.1		
Progression Factor		1.00	1.00		1.00		1.00	1.00			1.00		
Incremental Delay, d2		3.5	1.5		1.3		0.4	0.1			0.2		
Delay (s)		21.3	8.6		16.5		32.8	30.4			39.3		
Level of Service		C	A		В		C	C			D		
Approach Delay (s)		15.4	, ,		16.5			31.6			39.3		
Approach LOS		В			В			С			D		
Intersection Summary													
HCM 2000 Control Delay			17.2	Н	CM 2000	Level of S	ervice		В				
HCM 2000 Volume to Capacity ra	atio		0.74		,								
Actuated Cycle Length (s)	-		93.0	S	um of lost	time (s)			19.0				
Intersection Capacity Utilization			77.3%		CU Level o				D				
Analysis Period (min)			15		20.010	30.1.30							
c Critical Lane Group													

	۶	→	•	•	+	•	•	†	<i>></i>	/	ţ	4		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	
Lane Configurations		414		ř	ĵ»			4	7	, j	ĵ»			
Traffic Volume (vph)	30	455	0	85	230	85	5	355	575	75	60	10		
Future Volume (vph)	30	455	0	85	230	85	5	355	575	75	60	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0		100	190		0	0		400	125		0		
Storage Lanes	0		1	1		0	0		1	1		0		
Taper Length (ft)	25			25			25			25				
Right Turn on Red			Yes			Yes			Yes			Yes		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		442			443			907			3028			
Travel Time (s)		10.0			10.1			20.6			68.8			
Confl. Peds. (#/hr)							2					2		
Confl. Bikes (#/hr)			1											
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.91	0.91	0.91	0.92	0.92	0.92		
Heavy Vehicles (%)	0%	1%	0%	4%	4%	3%	0%	1%	0%	2%	2%	8%		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	0	584	0	88	325	0	0	395	632	82	76	0		
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Free	pm+pt	NA			
Protected Phases		2		1	6			8		7	4		9	
Permitted Phases	2			6			8		Free	4				
Detector Phase	2	2		1	6		8	8		7	4			
Switch Phase														
Minimum Initial (s)	10.0	10.0		7.0	10.0		10.0	10.0		2.0	10.0		1.0	
Minimum Split (s)	16.0	16.0		12.0	28.0		15.0	15.0		7.0	27.0		24.0	
Total Split (s)	17.0	17.0		12.0	29.0		26.0	26.0		11.0	37.0		24.0	
Total Split (%)	18.9%	18.9%		13.3%	32.2%		28.9%	28.9%		12.2%	41.1%		27%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0		2.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0		0.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0		0.0	0.0			
Total Lost Time (s)		5.0		5.0	5.0			5.0		5.0	5.0			
Lead/Lag	Lag	Lag		Lead			Lead	Lead		Lag				
Lead-Lag Optimize?	Ŭ									Ŭ				
Recall Mode	C-Min	C-Min		None	C-Min		None	None		None	None		None	
v/c Ratio		0.44		0.24	0.36			0.93	0.39	0.37	0.13			
Control Delay		26.4		17.7	17.3			65.0	0.7	30.5	17.8			
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0			
Total Delay		26.4		17.7	17.3			65.0	0.7	30.5	17.8			
Queue Length 50th (ft)		124		23	93			219	0	31	24			
Queue Length 95th (ft)		#298		77	249			#386	0	63	54			
Internal Link Dist (ft)		362			363			827			2948			
Turn Bay Length (ft)				190					400	125				
Base Capacity (vph)		1327		373	912			437	1615	231	647			
Starvation Cap Reductn		0		0	0			0	0	0	0			
Spillback Cap Reductn		0		0	0			0	0	0	0			
Storage Cap Reductn		0		0	0			0	0	0	0			
Reduced v/c Ratio		0.44		0.24	0.36			0.90	0.39	0.35	0.12			

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90
Offset: 11 (12%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

20. Hunting Rd & Kend	THEK S	וכ											Timing Plan. Weekday Worning
	۶	→	•	•	+	•	1	†	/	/	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4T>		7	f)			4	7	7	ĵ»		
Traffic Volume (vph)	30	455	0	85	230	85	5	355	575	75	60	10	
Future Volume (vph)	30	455	0	85	230	85	5	355	575	75	60	10	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0		5.0	5.0			5.0	4.0	5.0	5.0		
Lane Util. Factor		0.95		1.00	1.00			1.00	1.00	1.00	1.00		
Frpb, ped/bikes		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Flpb, ped/bikes		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Frt		1.00		1.00	0.96			1.00	0.85	1.00	0.98		
Flt Protected		1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		3565		1736	1757			1880	1615	1770	1801		
Flt Permitted		0.91		0.30	1.00			1.00	1.00	0.23	1.00		
Satd. Flow (perm)		3269		544	1757			1876	1615	420	1801		
Peak-hour factor, PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.91	0.91	0.91	0.92	0.92	0.92	
Adj. Flow (vph)	36	548	0.00	88	237	88	5	390	632	82	65	11	
RTOR Reduction (vph)	0	0	0	0	10	0	0	0	0	0	7	0	
Lane Group Flow (vph)	0	584	0	88	315	0	0	395	632	82	69	0	
Confl. Peds. (#/hr)	, ,	004		00	010		2	030	002	02	00	2	
Confl. Bikes (#/hr)			1				_						
Heavy Vehicles (%)	0%	1%	0%	4%	4%	3%	0%	1%	0%	2%	2%	8%	
Turn Type	Perm	NA	070	pm+pt	NA	0 70	Perm	NA	Free	pm+pt	NA	070	
Protected Phases	i Giiii	2		1	6		1 Cilli	8	1100	7	4		
Permitted Phases	2	2		6	U		8	U	Free	4	7		
Actuated Green, G (s)		32.9		43.6	43.6		U	20.4	90.0	30.0	30.0		
Effective Green, g (s)		32.9		43.6	43.6			20.4	90.0	30.0	30.0		
Actuated g/C Ratio		0.37		0.48	0.48			0.23	1.00	0.33	0.33		
Clearance Time (s)		5.0		5.0	5.0			5.0	1.00	5.0	5.0		
Vehicle Extension (s)		2.0		2.0	2.0			2.0		2.0	2.0		
		1195		339	851			425	1015	209	600		
Lane Grp Cap (vph)		1195						425	1615	0.02			
v/s Ratio Prot		-0.40		0.02	0.18			-0.04	-0.00		0.04		
v/s Ratio Perm		c0.18		0.11	0.07			c0.21	c0.39	0.11	0.44		
v/c Ratio		0.49		0.26	0.37			0.93	0.39	0.39	0.11		
Uniform Delay, d1		22.1		13.5	14.6			34.1	0.0	33.7	20.8		
Progression Factor		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Incremental Delay, d2		1.4		0.1	1.2			26.2	0.7	0.4	0.0		
Delay (s)		23.5		13.6	15.8			60.3	0.7	34.1	20.8		
Level of Service		C		В	B			E	Α	С	C		
Approach Delay (s)		23.5			15.3			23.6			27.7		
Approach LOS		С			В			С			С		
Intersection Summary													
HCM 2000 Control Delay			22.3	H	CM 2000	Level of S	ervice		С				
HCM 2000 Volume to Capacity r	atio		0.67										
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)			22.0				
Intersection Capacity Utilization			74.7%	IC	CU Level o	of Service			D				
Analysis Period (min)			15										
c Critical Lane Group													

	•	-	•	•	←	•	4	†	~	-	ļ	4	
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4		*	4			ર્ન	7	*	† 1>		
raffic Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
uture Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
ane Width (ft)	12	12	12	12	1300	1300	12	12	12	12	1300	12	
	0	12	0	0	13	0	0	12	100	150	12	0	
Storage Length (ft)			-			-	0					-	
torage Lanes	0		0	1		0	-		1	1		0	
aper Length (ft)	25			25			25			25			
Right Turn on Red			Yes			Yes			Yes			Yes	
ink Speed (mph)		30			30			30			30		
ink Distance (ft)		151			225			398			315		
ravel Time (s)		3.4			5.1			9.0			7.2		
Peak Hour Factor	0.75	0.75	0.75	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	
Shared Lane Traffic (%)				44%									
ane Group Flow (vph)	0	41	0	280	277	0	0	337	93	16	766	0	
urn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2			6		
Permitted Phases	<u> </u>						2		2	6			
Detector Phase	4	4		8	8		2	2	2	6	6		
Switch Phase				U	U					U	U		
Minimum Initial (s)	6.0	6.0		6.0	6.0		10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	27.0	27.0		11.0	11.0		15.0	15.0	15.0	23.0	23.0		
otal Split (s)	27.0	27.0		33.0	33.0		40.0	40.0	40.0	40.0	40.0		
otal Split (%)	27.0%	27.0%		33.0%	33.0%		40.0%	40.0%	40.0%	40.0%	40.0%		
'ellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0		
ost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0	0.0	0.0		
Total Lost Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
_ead/Lag													
_ead-Lag Optimize?													
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	C-Min	C-Min		
//c Ratio		0.20		0.75	0.71			0.30	0.09	0.03	0.36		
Control Delay		8.5		48.3	43.8			14.0	8.2	15.4	13.9		
Queue Delay		0.0		0.0	0.0			0.6	0.0	0.0	0.1		
Total Delay		8.5		48.3	43.8			14.6	8.2	15.4	14.0		
Queue Length 50th (ft)		0.5		174	163			56	1	4	124		
• • • • • • • • • • • • • • • • • • • •		12		187	176			m252	m30	21	270		
Queue Length 95th (ft)				107					11130	21			
nternal Link Dist (ft)		71			145			318	400	450	235		
Turn Bay Length (ft)									100	150			
Base Capacity (vph)		413		487	503			1112	986	568	2134		
Starvation Cap Reductn		0		0	0			437	0	0	0		
Spillback Cap Reductn		4		0	0			0	0	0	276		
Storage Cap Reductn		0		0	0			0	0	0	0		
Reduced v/c Ratio		0.10		0.57	0.55			0.50	0.09	0.03	0.41		
ntersection Summary													
rea Type:	Other												
Cycle Length: 100	Other												
, ,	0												
Actuated Cycle Length: 10		TL 1 C C	DTI O	(0									
Offset: 0 (0%), Referenced	to pnase 2:NB	IL and 6:S	BIL, Star	of Green									
Natural Cycle: 65													
Control Type: Actuated-Co													
n Volume for 95th perce	ntile queue is m	netered by	upstream	signal.									
				_									
	Gould St & Wind	igate Dwy/	Muzi Ford	Dwy									
-						•					4-		

	۶	→	•	•	+	•	1	†	<i>></i>	/		4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		*	4			ર્ન	7	*	↑ ↑		
Traffic Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
Future Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	12	12	13	13	12	12	12	12	12	12	
Total Lost time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lane Util. Factor		1.00		0.95	0.95			1.00	1.00	1.00	0.95		
Frt		0.87		1.00	0.97			1.00	0.85	1.00	1.00		
Flt Protected		1.00		0.95	0.96			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		1615		1681	1705			1861	1583	1770	3536		
Flt Permitted		1.00		0.95	0.96			0.99	1.00	0.51	1.00		
Satd. Flow (perm)		1615		1681	1705			1842	1583	941	3536		
Peak-hour factor, PHF	0.75	0.75	0.75	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	
Adj. Flow (vph)	1	0	40	500	1	56	6	331	93	16	761	5	
RTOR Reduction (vph)	0	38	0	0	10	0	0	0	32	0	0	0	
Lane Group Flow (vph)	0	3	0	280	267	0	0	337	61	16	766	0	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2			6		
Permitted Phases				•	_		2		2	6	-		
Actuated Green, G (s)		7.0		22.3	22.3			58.7	58.7	58.7	58.7		
Effective Green, q (s)		7.0		22.3	22.3			58.7	58.7	58.7	58.7		
Actuated g/C Ratio		0.07		0.22	0.22			0.59	0.59	0.59	0.59		
Clearance Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)		113		374	380			1081	929	552	2075		
v/s Ratio Prot		c0.00		c0.17	0.16						c0.22		
v/s Ratio Perm								0.18	0.04	0.02			
v/c Ratio		0.03		0.75	0.70			0.31	0.07	0.03	0.37		
Uniform Delay, d1		43.3		36.2	35.8			10.4	8.9	8.7	10.9		
Progression Factor		1.00		1.00	1.00			0.99	1.48	1.00	1.00		
Incremental Delay, d2		0.1		8.0	5.8			0.4	0.1	0.1	0.5		
Delay (s)		43.4		44.2	41.6			10.7	13.2	8.8	11.4		
Level of Service		D		D	D			В	В	Α	В		
Approach Delay (s)		43.4			42.9			11.2			11.3		
Approach LOS		D			D			В			В		
Intersection Summary													
HCM 2000 Control Delay			21.8	H	CM 2000 L	evel of Se	rvice		С				
HCM 2000 Volume to Capacity rat	io		0.44										
Actuated Cycle Length (s)			100.0	Sı	ım of lost t	ime (s)			12.0				
Intersection Capacity Utilization			44.1%	IC	U Level of	Service			Α				
Analysis Period (min)			15										
c Critical Lane Group													

	٠	→	•	•	←	•	4	†	/	-	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9
Lane Configurations	*	1		ች	1>	11511		4		022	4	05.1	20
Traffic Volume (vph)	180	235	50	70	155	60	25	420	55	30	570	100	
Future Volume (vph)	180	235	50	70	155	60	25	420	55	30	570	100	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	120	1300	0	100	1300	0	0	1300	0	0	1300	0	
Storage Lanes	1		0	1		0	0		0	0		0	
Taper Length (ft)	25		v	25		v	25		v	25		· ·	
Right Turn on Red	20		No			No			No			No	
Link Speed (mph)		30	110		30	110		30	110		30	110	
Link Distance (ft)		318			371			476			549		
Travel Time (s)		7.2			8.4			10.8			12.5		
Confl. Peds. (#/hr)	7		8	8	U	7	4	10.0	36	36	.2.0	4	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.89	0.89	0.89	0.93	0.93	0.93	
Heavy Vehicles (%)	3%	0%	0%	0%	2%	2%	1%	8%	0%	0%	3%	6%	
Bus Blockages (#/hr)	0	0	0	0	0	0	2	2	2	0	0	0	
Parking (#/hr)							0	0	0	0	0	0	
Shared Lane Traffic (%)										•		•	
Lane Group Flow (vph)	207	327	0	81	250	0	0	562	0	0	753	0	
Furn Type	D.P+P	NA		Perm	NA		Perm	NA		Perm	NA	•	
Protected Phases	1	1.2			2			3			3		9
Permitted Phases	2	2		2	-		3			3			
Detector Phase	1	12		2	2		3	3		3	3		
Switch Phase	•				=		_	•		-			
Minimum Initial (s)	6.0			10.0	10.0		10.0	10.0		10.0	10.0		7.0
Minimum Split (s)	11.5			15.0	15.0		15.0	15.0		15.0	15.0		20.0
otal Split (s)	17.0			34.0	34.0		54.0	54.0		54.0	54.0		20.0
Total Split (%)	13.6%			27.2%	27.2%		43.2%	43.2%		43.2%	43.2%		16%
Yellow Time (s)	4.5			3.0	3.0		4.0	4.0		4.0	4.0		2.0
All-Red Time (s)	1.0			1.0	1.0		1.0	1.0		1.0	1.0		0.0
ost Time Adjust (s)	0.0			0.0	0.0			0.0			0.0		
Γotal Lost Time (s)	5.5			4.0	4.0			5.0			5.0		
_ead/Lag	Lead			Lag	Lag								
_ead-Lag Optimize?													
Recall Mode	None			None	None		Min	Min		Min	Min		None
v/c Ratio	0.65	0.49		0.38	0.70			0.76			0.97		
Control Delay	35.2	28.2		40.5	48.3			31.4			52.7		
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0		
Total Delay	35.2	28.2		40.5	48.3			31.4			52.7		
Queue Length 50th (ft)	87	148		42	140			254			408		
Queue Length 95th (ft)	178	281		98	256			#669			#994		
Internal Link Dist (ft)		238			291			396			469		
Turn Bay Length (ft)	120			100									
Base Capacity (vph)	320	854		323	540			735			777		
Starvation Cap Reductn	0	0		0	0			0			0		
Spillback Cap Reductn	0	0		0	0			0			0		
Storage Cap Reductn	0	0		0	0			0			0		
Reduced v/c Ratio	0.65	0.38		0.25	0.46			0.76			0.97		

Area Type: Cycle Length: 125

Actuated Cycle Length: 99.6
Natural Cycle: 120

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Other

Queue shown is maximum after two cycles.

Splits and Phases: 12: Highland Ave & West St

	۶	-	•	•	-	•	4	†	~	-	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	1		*	1 >			4			4		
Traffic Volume (vph)	180	235	50	70	155	60	25	420	55	30	570	100	
Future Volume (vph)	180	235	50	70	155	60	25	420	55	30	570	100	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.5	5.5		4.0	4.0			5.0			5.0		
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00		
rpb, ped/bikes	1.00	0.99		1.00	0.99			0.99			1.00		
Flpb, ped/bikes	1.00	1.00		0.99	1.00			1.00			1.00		
-rt	1.00	0.97		1.00	0.96			0.99			0.98		
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00		
Satd. Flow (prot)	1749	1840		1782	1766			1552			1613		
Flt Permitted	0.33	1.00		0.56	1.00			0.95			0.96		
Satd. Flow (perm)	614	1840		1056	1766			1473			1556		
Peak-hour factor, PHF	0.87	0.87	0.87	0.86	0.86	0.86	0.89	0.89	0.89	0.93	0.93	0.93	
Adj. Flow (vph)	207	270	57	81	180	70	28	472	62	32	613	108	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	013	0	
ane Group Flow (vph)	207	327	0	81	250	0	0	562	0	0	753	0	
Confl. Peds. (#/hr)	7	321	8	8	230	7	4	302	36	36	733	4	
leavy Vehicles (%)	3%	0%	0%	0%	2%	2%	1%	8%	0%	0%	3%	6%	
Bus Blockages (#/hr)	0	0%	0 %	0%	0	0	2	2	2	0%	0	0 %	
Parking (#/hr)	U	U	U	U	U	U	0	0	0	0	0	0	
	D.P+P	NA		Perm	NA		Perm	NA	- 0	Perm	NA	- 0	
urn Type				Perm			Perm			Perm			
Protected Phases Permitted Phases	1	12		2	2		3	3		3	3		
	2	_			00.0		3	40.0		3	40.0		
Actuated Green, G (s)	31.9	37.4		20.2	20.2			49.8			49.8		
Effective Green, g (s)	31.9	37.4		20.2	20.2			49.8			49.8		
Actuated g/C Ratio	0.32	0.37		0.20	0.20			0.49			0.49		
Clearance Time (s)	5.5			4.0	4.0			5.0			5.0		
/ehicle Extension (s)	3.0			3.0	3.0			3.0			3.0		
ane Grp Cap (vph)	325	680		210	352			725			766		
//s Ratio Prot	c0.07	0.18			c0.14								
/s Ratio Perm	0.13			0.08				0.38			c0.48		
/c Ratio	0.64	0.48		0.39	0.71			0.78			0.98		
Jniform Delay, d1	27.4	24.4		35.1	37.7			21.1			25.2		
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00		
ncremental Delay, d2	4.1	0.5		1.2	6.6			5.2			28.1		
Delay (s)	31.4	24.9		36.2	44.3			26.2			53.4		
evel of Service	С	С		D	D			С			D		
pproach Delay (s)		27.5			42.4			26.2			53.4		
pproach LOS		С			D			С			D		
ntersection Summary													
ICM 2000 Control Delay			38.4	H	CM 2000 L	evel of Se	rvice		D				
ICM 2000 Volume to Capaci	ity ratio		0.84										
Actuated Cycle Length (s)			101.1	Sı	um of lost t	time (s)			16.5				
ntersection Capacity Utilization	on		82.3%		U Level of				Е				
Analysis Period (min)			15										

	٠	-	•	•	+	•	1	†	<i>></i>	/	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9
Lane Configurations	*	1 >		*	1			4	#		414		
Traffic Volume (vph)	45	460	15	315	630	75	25	125	175	95	300	45	
Future Volume (vph)	45	460	15	315	630	75	25	125	175	95	300	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	150		0	150		0	0		150	0		200	
Storage Lanes	1		0	1		0	0		1	0		1	
Taper Length (ft)	25			25			25			25			
Right Turn on Red			Yes			Yes			No			No	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		1325			691			391			2983		
Travel Time (s)		30.1			15.7			8.9			67.8		
Confl. Peds. (#/hr)	2					2	2					2	
Peak Hour Factor	0.91	0.91	0.91	0.97	0.97	0.97	0.87	0.87	0.87	0.88	0.88	0.88	
Heavy Vehicles (%)	0%	0%	0%	1%	2%	1%	0%	0%	0%	0%	0%	0%	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	49	521	0	325	726	0	0	173	201	0	500	0	
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	pm+ov	Perm	NA		
Protected Phases		6		5	2			8	5		4		9
Permitted Phases	6			2			8		8	4			
Detector Phase	6	6		5	2		8	8	5	4	4		
Switch Phase													
Minimum Initial (s)	10.0	10.0		6.0	10.0		6.0	6.0	6.0	6.0	6.0		7.0
Minimum Split (s)	17.5	17.5		13.5	17.5		12.5	12.5	13.5	12.5	12.5		28.0
Total Split (s)	37.5	37.5		22.5	37.5		31.5	31.5	22.5	31.5	31.5		28.0
Total Split (%)	31.4%	31.4%		18.8%	31.4%		26.4%	26.4%	18.8%	26.4%	26.4%		23%
Yellow Time (s)	4.0	4.0		4.0	4.0		3.5	3.5	4.0	3.5	3.5		3.0
All-Red Time (s)	3.5	3.5		3.5	3.5		3.0	3.0	3.5	3.0	3.0		4.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0		
Total Lost Time (s)	7.5	7.5		7.5	7.5			6.5	7.5		6.5		
Lead/Lag	Lag	Lag		Lead					Lead				
Lead-Lag Optimize?													
Recall Mode	Min	Min		None	Min		None	None	None	None	None		None
v/c Ratio	0.21	0.85		0.85	0.70			0.53	0.27		0.75		
Control Delay	30.6	46.0		42.4	21.9			39.9	18.2		42.8		
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0		
Total Delay	30.6	46.0		42.4	21.9			39.9	18.2		42.8		
Queue Length 50th (ft)	20	268		115	257			83	62		134		
Queue Length 95th (ft)	68	#673		#409	#750			191	162		#271		
Internal Link Dist (ft)		1245			611			311			2903		
Turn Bay Length (ft)	150			150					150				
Base Capacity (vph)	233	614		384	1042			378	752		768		
Starvation Cap Reductn	0	0		0	0			0	0		0		
Spillback Cap Reductn	0	0		0	0			0	0		0		
Storage Cap Reductn	0	0		0	0			0	0		0		
Reduced v/c Ratio	0.21	0.85		0.85	0.70			0.46	0.27		0.65		

Area Type: Other

Cycle Length: 119.5 Actuated Cycle Length: 94 Natural Cycle: 130

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 14: Webster St & Highland Ave

	۶	→	•	•	-	•	4	†	~	-	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ĵ.		7	1>			4	7		414		
Traffic Volume (vph)	45	460	15	315	630	75	25	125	175	95	300	45	
Future Volume (vph)	45	460	15	315	630	75	25	125	175	95	300	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.5	7.5		7.5	7.5			6.5	7.5		6.5		
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	1.00		0.95		
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00		
Frt	1.00	1.00		1.00	0.98			1.00	0.85		0.98		
Flt Protected	0.95	1.00		0.95	1.00			0.99	1.00		0.99		
Satd. Flow (prot)	1803	1891		1787	1831			1884	1615		3508		
Flt Permitted	0.38	1.00		0.12	1.00			0.74	1.00		0.80		
Satd. Flow (perm)	716	1891		232	1831			1401	1615		2841		
Peak-hour factor, PHF	0.91	0.91	0.91	0.97	0.97	0.97	0.87	0.87	0.87	0.88	0.88	0.88	
Adj. Flow (vph)	49	505	16	325	649	77	29	144	201	108	341	51	
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	0	0	0	0	
Lane Group Flow (vph)	49	520	0	325	723	0	0	173	201	0	500	0	
Confl. Peds. (#/hr)	2					2	2					2	
Heavy Vehicles (%)	0%	0%	0%	1%	2%	1%	0%	0%	0%	0%	0%	0%	
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	pm+ov	Perm	NA		
Protected Phases		6		5	2			8	5		4		
Permitted Phases	6			2			8		8	4			
Actuated Green, G (s)	30.6	30.6		53.4	53.4			21.9	37.2		21.9		
Effective Green, g (s)	30.6	30.6		53.4	53.4			21.9	37.2		21.9		
Actuated g/C Ratio	0.31	0.31		0.54	0.54			0.22	0.37		0.22		
Clearance Time (s)	7.5	7.5		7.5	7.5			6.5	7.5		6.5		
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0		
Lane Grp Cap (vph)	219	580		363	981			308	603		624		
v/s Ratio Prot		0.28		0.14	c0.40				0.05				
v/s Ratio Perm	0.07			c0.34				0.12	0.07		c0.18		
v/c Ratio	0.22	0.90		0.90	0.74			0.56	0.33		0.80		
Uniform Delay, d1	25.7	33.0		25.3	17.7			34.6	22.3		36.8		
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00		
Incremental Delay, d2	0.5	16.4		23.4	2.9			2.3	0.3		7.3		
Delay (s)	26.2	49.4		48.7	20.6			36.9	22.7		44.1		
Level of Service	С	D		D	С			D	С		D		
Approach Delay (s)		47.4			29.3			29.3			44.1		
Approach LOS		D			С			С			D		
Intersection Summary													
HCM 2000 Control Delay			36.4	Н	CM 2000 L	evel of Se	ervice		D				
HCM 2000 Volume to Capacity	y ratio		0.87										
Actuated Cycle Length (s)	,		99.6	Sı	um of lost t	time (s)			28.5				
Intersection Capacity Utilizatio	n		89.9%		U Level of				E				
Analysis Period (min)			15										

Analysis Period (min) c Critical Lane Group

	٠	-	\rightarrow	•	←	•	•	†	<i>></i>	>	↓	4				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	Ø10	Ø11	
Lane Configurations	*	↑ ↑		7	↑ ↑			ર્ન	7	14.54	₽.					
Traffic Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135				
Future Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	175		0	165		400	0		150	200		200				
Storage Lanes	1		0	1		0	0		1	1		0				
Taper Length (ft)	25			25			25			25						
Right Turn on Red			Yes			Yes			Yes			Yes				
Link Speed (mph)		30			30			30			30					
Link Distance (ft)		345			745			3028			398					
Travel Time (s)		7.8			16.9			68.8			9.0					
Confl. Bikes (#/hr)						1										
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.83	0.83	0.83				
Shared Lane Traffic (%)																
Lane Group Flow (vph)	38	819	0	142	1352	0	0	102	108	922	392	0				
Turn Type	Prot	NA		Prot	NA		Split	NA	pt+ov	Split	NA					
Protected Phases	1	6		5	2		3	3	3 5	4	4		9	10	11	
Permitted Phases																
Detector Phase	1	6		5	2		3	3	3 5	4	4					
Switch Phase																
Minimum Initial (s)	6.0	10.0		6.0	10.0		6.0	6.0		6.0	6.0		1.0	1.0	1.0	
Minimum Split (s)	12.0	20.0		12.0	25.0		12.0	12.0		21.0	21.0		3.0	3.0	3.0	
Total Split (s)	12.0	31.0		17.0	36.0		14.0	14.0		32.0	32.0		3.0	3.0	3.0	
Total Split (%)	12.0%	31.0%		17.0%	36.0%		14.0%	14.0%		32.0%	32.0%		3%	3%	3%	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.5	3.5		3.5	3.5		2.0	2.0	2.0	
All-Red Time (s)	3.0	1.0		3.0	1.0		2.5	2.5		2.5	2.5		0.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0					
Total Lost Time (s)	6.0	5.0		6.0	5.0			6.0		6.0	6.0					
Lead/Lag	Lead			Lead			Lead	Lead					Lag	Lag	Lag	
Lead-Lag Optimize?																
Recall Mode	None	Min		None	Min		Min	Min		C-Min	C-Min		None	None	None	
v/c Ratio	0.36	0.80		0.78	1.02			0.73	0.26	0.93	0.74					
Control Delay	55.0	40.1		71.9	62.3			74.0	2.7	54.5	41.2					
Queue Delay	0.0	0.0		0.0	0.2			5.4	0.0	5.1	1.1					
Total Delay	55.0	40.1		71.9	62.5			79.4	2.7	59.6	42.3					
Queue Length 50th (ft)	24	252		89	~527			65	0	310	228					
Queue Length 95th (ft)	57	#373		#182	#702			#126	5	#376	#239					
Internal Link Dist (ft)	47-	265		405	665			2948	450	000	318					
Turn Bay Length (ft)	175	4007		165	400.4			4.45	150	200	507					
Base Capacity (vph)	106	1027		194	1324			147	424	987	527					
Starvation Cap Reductn	0	0		0	0			0	0	43	32					
Spillback Cap Reductn	0	0		0	1			17	0	0	0					
Storage Cap Reductn	0	0		0	0			0	0	0	0					
Reduced v/c Ratio	0.36	0.80		0.73	1.02			0.78	0.25	0.98	0.79					

Other

Area Type: Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 4:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

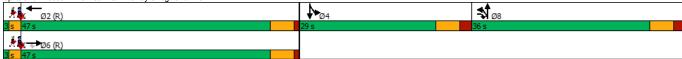
Splits and Phases: 15: Hunting Rd/Gould St & Highland Ave

	۶	→	•	•	—	4	1	†	/	/		4		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	*	↑ ↑		*	↑ ↑			4	7	14.14	ĵ.			
Traffic Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135		
Future Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	0.97	1.00			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00			
Frt	1.00	1.00		1.00	0.97			1.00	0.85	1.00	0.94			
Flt Protected	0.95	1.00		0.95	1.00			0.99	1.00	0.95	1.00			
Satd. Flow (prot)	1770	3525		1770	3413			1841	1583	3433	1747			
Flt Permitted	0.95	1.00		0.95	1.00			0.99	1.00	0.95	1.00			
Satd. Flow (perm)	1770	3525		1770	3413			1841	1583	3433	1747			
Peak-hour factor, PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.83	0.83	0.83		
Adj. Flow (vph)	38	797	22	142	1068	284	24	78	108	922	229	163		
RTOR Reduction (vph)	0	2	0	0	22	0	0	0	89	0	25	0		
Lane Group Flow (vph)	38	817	0	142	1330	0	0	102	19	922	367	0		
Confl. Bikes (#/hr)						1								
Turn Type	Prot	NA		Prot	NA		Split	NA	pt+ov	Split	NA			
Protected Phases	1	6		5	2		3	3	3 5	4	4			
Permitted Phases														
Actuated Green, G (s)	3.6	31.5		10.3	38.2			7.6	17.9	27.6	27.6			
Effective Green, g (s)	3.6	31.5		10.3	38.2			7.6	17.9	27.6	27.6			
Actuated g/C Ratio	0.04	0.32		0.10	0.38			0.08	0.18	0.28	0.28			
Clearance Time (s)	6.0	5.0		6.0	5.0			6.0		6.0	6.0			
Vehicle Extension (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0			
Lane Grp Cap (vph)	63	1110		182	1303			139	283	947	482			
v/s Ratio Prot	0.02	0.23		c0.08	c0.39			c0.06	0.01	c0.27	0.21			
v/s Ratio Perm														
v/c Ratio	0.60	0.74		0.78	1.02			0.73	0.07	0.97	0.76			
Uniform Delay, d1	47.5	30.5		43.7	30.9			45.2	34.1	35.8	33.2			
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.09	1.07			
Incremental Delay, d2	10.7	2.2		17.8	30.4			15.8	0.0	22.4	10.0			
Delay (s)	58.2	32.8		61.6	61.3			61.0	34.2	61.6	45.5			
Level of Service	Е	С		E	Е			Е	С	Е	D			
Approach Delay (s)		33.9			61.3			47.2			56.8			
Approach LOS		С			Е			D			Е			
Intersection Summary														
HCM 2000 Control Delay			52.9	Н	CM 2000 L	evel of Se	rvice		D					
HCM 2000 Volume to Capacit	ty ratio		1.05											
Actuated Cycle Length (s)			100.0		um of lost t	. ,			27.0					
Intersection Capacity Utilization	on		84.3%	IC	CU Level of	Service			Е					
Analysis Period (min)			15											
c Critical Lane Group														

	•	→	•	•	+	•	1	†	/	\	↓	4			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø1	Ø5	
Lane Configurations		^	7		↑ ↑		*	4			4				
Traffic Volume (vph)	0	915	285	0	1675	5	630	0	110	1	1	10			
Future Volume (vph)	0	915	285	0	1675	5	630	0	110	1	1	10			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	0	.000	0	0	1000	0	75	1000	0	0	1000	0			
Storage Lanes	0		1	0		0	1		0	0		0			
Taper Length (ft)	25			25			25		•	25		•			
Right Turn on Red			Yes			Yes			Yes			Yes			
Link Speed (mph)		30	. 00		30	. 00		30			30				
Link Distance (ft)		176			681			500			267				
Travel Time (s)		4.0			15.5			11.4			6.1				
Confl. Peds. (#/hr)					.0.0				1	1	0				
Confl. Bikes (#/hr)						1			•	•					
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.63	0.63	0.63			
Heavy Vehicles (%)	0%	0%	2%	0.03	2%	0.03	2%	0%	1%	0%	0%	0%			
Shared Lane Traffic (%)	U /0	0 /0	2 /0	0 / 0	270	0 / 0	40%	0 /0	1 /0	0 70	0 /0	0 / 0			
Lane Group Flow (vph)	0	1028	320	0	1888	0	425	407	0	0	20	0			
Turn Type		NA	pm+ov	· ·	NA	, ,	Split	NA	U	Split	NA	U			
Protected Phases		6	8		2		8	8		4	4		1	5	
Permitted Phases		U	6				U	U					'	J	
Detector Phase		6	8		2		8	8		4	4				
Switch Phase															
Minimum Initial (s)		10.0	6.0		10.0		6.0	6.0		6.0	6.0		1.0	1.0	
Minimum Split (s)		25.0	12.0		16.0		12.0	12.0		29.0	29.0		3.0	3.0	
Total Split (s)		47.0	36.0		47.0		36.0	36.0		29.0	29.0		3.0	3.0	
Total Split (%)		40.9%	31.3%		40.9%		31.3%	31.3%		25.2%	25.2%		3%	3%	
Yellow Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0		2.0	2.0	
All-Red Time (s)		1.0	2.0		1.0		2.0	2.0		2.0	2.0		0.0	0.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		2.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0	6.0		5.0		6.0	6.0			6.0				
Lead/Lag		Lag	0.0		Lag		0.0	0.0			0.0		Lead	Lead	
Lead-Lag Optimize?		Lay			Lay								Leau	Leau	
Recall Mode		C-Min	None		C-Min		None	None		None	None		None	None	
v/c Ratio		0.55	0.22		1.02		0.82	0.72		NOTIC	0.13		None	NOHE	
Control Delay		22.5	0.22		53.9		51.1	34.9			23.6				
Queue Delay		0.0	0.9		0.0		0.0	0.0			0.0				
•		22.5	0.0		53.9		51.1	34.9			23.6				
Total Delay Queue Length 50th (ft)		22.5	0.9		651		291	207			23.6				
		427	24		#1090		#532	#396			13				
Queue Length 95th (ft)		427 96	24		#1090		#532	#396 420			187				
Internal Link Dist (ft)		90			001		75	420			107				
Turn Bay Length (ft)		1074	1447		1050			F00			250				
Base Capacity (vph)		1874			1856		518	568			350				
Starvation Cap Reductn		0	0		0		0	0			0				
Spillback Cap Reductn		0	0		0		0	0			0				
Storage Cap Reductn		0	0		0		0	0			0				
Reduced v/c Ratio		0.55	0.22		1.02		0.82	0.72			0.06				

Area Type: Other Cycle Length: 115

Actuated Cycle Length: 115

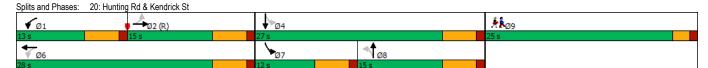

Offset: 0 (0%), Referenced to phase 2:WBT and 6:EBT, Start of Green Natural Cycle: 150

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 18: 1st Ave/Driveway & Highland Ave


	ၨ	→	•	•	←	•	•	†	~	\	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	7		↑ ↑		*	4			4		
Traffic Volume (vph)	0	915	285	0	1675	5	630	0	110	1	1	10	
Future Volume (vph)	0	915	285	0	1675	5	630	0	110	1	1	10	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0	6.0		5.0		6.0	6.0			6.0		
Lane Util. Factor		0.95	1.00		0.95		0.95	0.95			1.00		
Frpb, ped/bikes		1.00	1.00		1.00		1.00	1.00			1.00		
Flpb, ped/bikes		1.00	1.00		1.00		1.00	1.00			1.00		
Frt		1.00	0.85		1.00		1.00	0.95			0.89		
Flt Protected		1.00	1.00		1.00		0.95	0.97			1.00		
Satd. Flow (prot)		3610	1583		3538		1681	1630			1686		
Flt Permitted		1.00	1.00		1.00		0.95	0.97			1.00		
Satd. Flow (perm)		3610	1583		3538		1681	1630			1686		
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.63	0.63	0.63	
Adj. Flow (vph)	0	1028	320	0	1882	6	708	0	124	2	2	16	
RTOR Reduction (vph)	0	0	63	0	0	0	0	66	0	0	15	0	
Lane Group Flow (vph)	0	1028	257	0	1888	0	425	341	0	0	5	0	
Confl. Peds. (#/hr)		.020					.20		1	1			
Confl. Bikes (#/hr)						1							
Heavy Vehicles (%)	0%	0%	2%	0%	2%	0%	2%	0%	1%	0%	0%	0%	
Turn Type		NA	pm+ov		NA		Split	NA	.,,	Split	NA		
Protected Phases		6	8		2		8	8		4	4		
Permitted Phases			6		_					•	•		
Actuated Green, G (s)		56.7	92.2		56.7		35.5	35.5			5.8		
Effective Green, q (s)		56.7	92.2		56.7		35.5	35.5			5.8		
Actuated g/C Ratio		0.49	0.80		0.49		0.31	0.31			0.05		
Clearance Time (s)		5.0	6.0		5.0		6.0	6.0			6.0		
Vehicle Extension (s)		2.0	2.0		2.0		2.0	2.0			2.0		
Lane Grp Cap (vph)		1779	1351		1744		518	503			85		
v/s Ratio Prot		0.28	0.06		c0.53		c0.25	0.21			c0.00		
v/s Ratio Perm		0.20	0.10		00.00		00.20	0.21			00.00		
v/c Ratio		0.58	0.19		1.08		0.82	0.68			0.06		
Uniform Delay, d1		20.7	2.7		29.1		36.8	34.8			52.0		
Progression Factor		1.00	1.00		1.00		1.00	1.00			1.00		
Incremental Delay, d2		1.4	0.0		47.7		9.6	2.9			0.1		
Delay (s)		22.0	2.7		76.8		46.4	37.6			52.1		
Level of Service		C	A		E		D	D			D		
Approach Delay (s)		17.4			76.8			42.1			52.1		
Approach LOS		В			E			D			D		
Intersection Summary													
HCM 2000 Control Delay			50.1	HO	CM 2000 L	evel of Se	ervice		D				
HCM 2000 Volume to Capacity ration	0		0.95										
Actuated Cycle Length (s)			115.0	Su	ım of lost t	time (s)			19.0				
Intersection Capacity Utilization			83.1%	IC	U Level of	Service			Е				
Analysis Period (min)			15										
c Critical Lane Group													

	٠	-	•	•	←	•	4	†	/	>	↓	4		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	
Lane Configurations		414		7	1>			ર્ન	1	*	1>			
Traffic Volume (vph)	15	235	2	475	405	45	1	110	135	85	190	15		
Future Volume (vph)	15	235	2	475	405	45	1	110	135	85	190	15		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	0		100	190		0	0		400	125		0		
Storage Lanes	0		1	1		0	0		1	1		0		
Taper Length (ft)	25			25			25			25				
Right Turn on Red			Yes			Yes			Yes			Yes		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		442			443			907			3028			
Travel Time (s)		10.0			10.1			20.6			68.8			
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.94	0.94	0.94		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	0	276	0	500	473	0	0	134	163	90	218	0		
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Free	pm+pt	NA			
Protected Phases		2		1	6			8		7	4		9	
Permitted Phases	2			6			8		Free	4				
Detector Phase	2	2		1	6		8	8		7	4			
Switch Phase														
Minimum Initial (s)	10.0	10.0		7.0	10.0		10.0	10.0		5.0	10.0		7.0	
Minimum Split (s)	15.0	15.0		12.0	16.0		15.0	15.0		10.0	27.0		25.0	
Total Split (s)	15.0	15.0		13.0	28.0		15.0	15.0		12.0	27.0		25.0	
Total Split (%)	18.8%	18.8%		16.3%	35.0%		18.8%	18.8%		15.0%	33.8%		31%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0		2.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0		1.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0		0.0	0.0			
Total Lost Time (s)		5.0		5.0	5.0			5.0		5.0	5.0			
Lead/Lag	Lag	Lag		Lead			Lag	Lag		Lead				
Lead-Lag Optimize?														
Recall Mode	C-Min	C-Min		None	Min		None	None		None	None		None	
v/c Ratio		0.53		0.57	0.41			0.58	0.10	0.33	0.48			
Control Delay		33.7		11.4	9.3			43.8	0.1	26.1	28.2			
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0			
Total Delay		33.7		11.4	9.3			43.8	0.1	26.1	28.2			
Queue Length 50th (ft)		68		126	113			64	0	34	87			
Queue Length 95th (ft)		97		196	176			109	0	71	150			
Internal Link Dist (ft)		362			363			827			2948			
Turn Bay Length (ft)				190					400	125				
Base Capacity (vph)		523		875	1159			232	1583	277	510			
Starvation Cap Reductn		0		0	0			0	0	0	0			
Spillback Cap Reductn		0		0	0			0	0	0	0			
Storage Cap Reductn		0		0	0			0	0	0	0			
Reduced v/c Ratio		0.53		0.57	0.41			0.58	0.10	0.32	0.43			

Area Type: Other

Cycle Length: 80

Offset: 5 (6%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90
Control Type: Actuated-Coordinated

	•	→	•	•	—	•	1	†	<i>></i>	/	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		414		7	ĵ.			ર્ન	7	, j	ĵ,		
Traffic Volume (vph)	15	235	2	475	405	45	1	110	135	85	190	15	
Future Volume (vph)	15	235	2	475	405	45	1	110	135	85	190	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0		5.0	5.0			5.0	4.0	5.0	5.0		
Lane Util. Factor		0.95		1.00	1.00			1.00	1.00	1.00	1.00		
Frt		1.00		1.00	0.99			1.00	0.85	1.00	0.99		
Flt Protected		1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		3525		1770	1835			1862	1583	1770	1842		
Flt Permitted		0.91		0.38	1.00			1.00	1.00	0.42	1.00		
Satd. Flow (perm)		3202		704	1835			1857	1583	781	1842		
Peak-hour factor, PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.94	0.94	0.94	
Adj. Flow (vph)	16	258	2	500	426	47	1	133	163	90	202	16	
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	0	0	4	0	
ane Group Flow (vph)	0	275	0	500	470	0	0	134	163	90	214	0	
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Free	pm+pt	NA		
Protected Phases		2		1	6			8		7	4		
Permitted Phases	2			6			8		Free	4			
Actuated Green, G (s)		12.0		49.4	49.4			10.0	80.0	20.6	20.6		
Effective Green, g (s)		12.0		49.4	49.4			10.0	80.0	20.6	20.6		
Actuated g/C Ratio		0.15		0.62	0.62			0.12	1.00	0.26	0.26		
Clearance Time (s)		5.0		5.0	5.0			5.0		5.0	5.0		
Vehicle Extension (s)		2.0		2.0	2.0			2.0		2.0	2.0		
Lane Grp Cap (vph)		480		866	1133			232	1583	270	474		
//s Ratio Prot				c0.23	0.26					0.02	c0.12		
//s Ratio Perm		0.09		c0.12				c0.07	0.10	0.06			
v/c Ratio		0.57		0.58	0.42			0.58	0.10	0.33	0.45		
Uniform Delay, d1		31.6		8.6	7.9			33.0	0.0	23.4	25.0		
Progression Factor		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
ncremental Delay, d2		4.9		0.6	0.1			2.2	0.1	0.3	0.3		
Delay (s)		36.5		9.2	8.0			35.2	0.1	23.7	25.2		
_evel of Service		D		Α	Α			D	Α	С	С		
Approach Delay (s)		36.5			8.6			15.9			24.8		
Approach LOS		D			Α			В			С		
ntersection Summary													
HCM 2000 Control Delay			16.6	H	CM 2000 L	evel of Se	rvice		В				
HCM 2000 Volume to Capacity r	ratio		0.65										
Actuated Cycle Length (s)			80.0		um of lost t	. ,			23.0				
ntersection Capacity Utilization			58.5%	IC	U Level of	Service			В				
Analysis Period (min)			15										

							_
Intersection							
Int Delay, s/veh	6.6						1
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Ī
	WBL			NBK			
Lane Configurations		70	}	20	.	↑	
Traffic Vol, veh/h	105	70 70	305 305	20	15	615 615	
Future Vol, veh/h	105			0	15		
Conflicting Peds, #/hr	O Cton	O Ctor	0 Free	-	0 Free	0	
Sign Control	Stop	Stop		Free		Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	150	-	-	150	-	
Veh in Median Storage, #	0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	81	81	75	75	73	73	
Heavy Vehicles, %	0	0	0	0	0	6	
Mvmt Flow	130	86	407	27	21	842	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1305	421	0	0	434	0	
Stage 1	421	-	-	-	-	-	
Stage 2	884	_	-		-	_	
Critical Hdwy	6.4	6.2	_	-	4.1	_	
Critical Hdwy Stg 1	5.4	-	-	-	-	_	
Critical Hdwy Stg 2	5.4	-	-	-	-		
Follow-up Hdwy	3.5	3.3	_	_	2.2	_	
Pot Cap-1 Maneuver	178	637	_	_	1136	_	
Stage 1	667	- 001	-	-	1130	-	
Stage 2	407	-	-		-		
Platoon blocked, %	407		-	-		-	
Mov Cap-1 Maneuver	175	637	_		1136		
	175						
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	667	-	-	-	-	-	
Stage 2	400	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	45.7		0		0.2		
HCM LOS	Е						
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	WBLn2	SBL	
Capacity (veh/h)		-	-	175	637	1136	
HCM Lane V/C Ratio		-	-	0.741	0.136	0.018	
HCM Control Delay (s)			-	68.5	11.5	8.2	
HCM Lane LOS		-	-	00.5 F	11.5 B	6.2 A	
HCM 95th %tile Q(veh)		-	-	4.7	0.5	0.1	
HOW SOUL WILLE CALLED		-	-	4.7	0.3	0.1	

Comment 25

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: Central Street at Cedar Street
Major Street Direction: Eastbound-Westbound
▼

Year: 2022 Condition: Existing Conditions

Operating speed on major roadway: 35 mph Required

Number of approaches: 3 approach volumes

				Adjusted
Warrant 1	EIGHT-HOUR VEHICULAR VO	DLUME	Minin	num* Minimum**
Warrant 1A	MINIMUM VEHICULAR VOLUM	ME (8 hours of day)		
	Major Street :	1 Lane(s) on each approach	50	00 500
	Minor Street :	1 Lane(s) on each approach	15	50 150
Warrant 1B	INTERRUPTION OF CONTINU	IOUS TRAFFIC (8 hours of day)		
	Major Street :	1 Lane(s) on each approach	75	50 750
	Minor Street :	1 Lane(s) on each approach	7:	5 75
80 PERCEN	T SATISFACTION OF WARRAN	IT 1A AND WARRANT 1B	Warra	ant 1A Warrant 1B
	Major Street :	1 Lane(s) on each approach	40	00 600
	Minor Street :	1 Lane(s) on each approach	12	20 60

Warrant 2 FOUR HOUR VEHICULAR VOLUME

Major Street: 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-1 or 4C-2.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

Warrant 3 PEAK HOUR VOLUME

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

			Entering Vol.	Entering Vol.	on Major Road	Tot. Ent. Vol.	Mee	d warrants	;?		
Н	lour		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
6:00 -	7:00	AM	100	324	121	445	No	No	No	No	No
7:00 -	8:00	AM	203	656	226	882	Yes	Yes	Yes	Yes	No
8:00 -	9:00	AM	204	660	230	890	Yes	Yes	Yes	Yes	No
9:00 -	10:00	AM	156	505	215	720	Yes	No	Yes	No	No
10:00 -	11:00	AM	132	428	223	651	No	No	Yes	No	No
11:00 -	12:00	AM	140	451	243	694	No	No	Yes	No	No
12:00 -	1:00	PM	140	450	247	697	No	No	Yes	No	No
1:00 -	2:00	PM	150	314	401	715	No	No	Yes	No	No
2:00 -	3:00	PM	159	330	395	725	Yes	No	Yes	No	No
3:00 -	4:00	PM	184	384	367	751	Yes	Yes	Yes	Yes	No
4:00 -	5:00	PM	175	366	422	788	Yes	Yes	Yes	Yes	No
5:00 -	6:00	PM	141	295	540	835	No	Yes	Yes	Yes	No
6:00 -	7:00	PM	136	283	471	754	No	Yes	Yes	No	No
							No	No	Yes	Yes	No
						Warrants		1		2	3
						Met?		Yes		Yes	No

Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

Warrant 9, Grade Crossing:

NON-VOLUME-BASED WARRANTS

	NON-VOLUI	WE-BASED WARRANTS	
Warrant 4, Minimum Pedestrian Volume: *107 pedestrians per hour is the minimum	No n threshold	Warrant 5, School Crossing: See MUTCD for details.	No
<	7:00 AM 6100 8:00 AM 6100 4:00 PM 6100 5:00 PM		
Warrant 6, Coordinated Signal System: See MUTCD for details.	No S.SST N	Warrant 7, Crash Experience: # of accidents "correctable by signalization" occuring in the last 12 months:	No
Warrant 8, Roadway Network:	No	(threshold is 5 crashes in last year correctable by signalization)	

See MUTCD for details.

Total Crashes 2015-2019
based on MassDOT crash portal

last updated: 08/05/05 [version]

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: **Central Street at Cedar Street** Major Street Direction: Eastbound-Westbound

Year: 2029 Condition: No Build Conditions

Operating speed on major roadway: 35 mph Required Number of approaches: approach volumes 3

				Adjusted
Warrant 1	EIGHT-HOUR VEHICULAR VC	<u>LUME</u>	Minimum*	Minimum**
Warrant 1A	MINIMUM VEHICULAR VOLUM	ΛΕ (8 hours of day)		
	Major Street :	1 Lane(s) on each approach	500	500
	Minor Street :	1 Lane(s) on each approach	150	150
Warrant 1B	INTERRUPTION OF CONTINU	OUS TRAFFIC (8 hours of day)		
	Major Street :	1 Lane(s) on each approach	750	750
	Minor Street :	1 Lane(s) on each approach	75	75
80 PERCEN	T SATISFACTION OF WARRAN	IT 1A AND WARRANT 1B	Warrant 1A	Warrant 1B
	Major Street :	1 Lane(s) on each approach	400	600
	Minor Street :	1 Lane(s) on each approach	120	60

FOUR HOUR VEHICULAR VOLUME Warrant 2

Major Street: If "verify" indicated, see Figure 4C-1 or 4C-2. 1 Lane(s) on each approach

Minor Street: 25 = accuracy of regression equations 1 Lane(s) on each approach

PEAK HOUR VOLUME Warrant 3

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

	Entering Vol. Entering Vol. on Major				on Major Road	Tot. Ent. Vol.	Meets the following volume-based warrants				;?
Ho	our		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
0.00	7:00	0.04	400	240	400	404	NI-	NI-	NIE	NI-	NI-
6:00 -	7:00	AM	109	349	132	481	No	No	No	No	No
7:00 -	8:00	AM	219	705	245	950	Yes	Yes	Yes	Yes	No
8:00 -	9:00	AM	220	710	250	960	Yes	Yes	Yes	Yes	No
9:00 -	10:00	AM	169	543	234	777	Yes	Yes	Yes	Yes	No
10:00 -	11:00	AM	143	462	242	704	No	No	Yes	No	No
11:00 -	12:00	AM	150	485	264	749	Yes	No	Yes	No	No
12:00 -	1:00	PM	150	484	268	752	Yes	Yes	Yes	No	No
1:00 -	2:00	PM	162	335	431	766	Yes	Yes	Yes	Yes	No
2:00 -	3:00	PM	171	352	425	777	Yes	Yes	Yes	Yes	No
3:00 -	4:00	PM	198	410	394	804	Yes	Yes	Yes	Yes	No
4:00 -	5:00	PM	190	391	453	844	Yes	Yes	Yes	Yes	No
5:00 -	6:00	PM	153	315	580	895	Yes	Yes	Yes	Yes	No
6:00 -	7:00	PM	146	302	506	808	No	Yes	Yes	No	No
							Yes	Yes	Yes	Yes	No
						Warrants		1		2	3
						Met?		Yes		Yes	No

Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

Warrant 9, Grade Crossing:

NON-VOLUME-BASED WARRANTS

			IL BAGED WARRANTO	
Warrant 4, Minimum Pedestrian Volume: *107 pedestrians per hour is the minim	No num thresh	old	Warrant 5, School Crossing: See MUTCD for details.	No
Peak Four Hour Pedestrian Volumes:	<100 <100 <100 <100	7:00 AM 8:00 AM 4:00 PM 5:00 PM		
Warrant 6, Coordinated Signal System: See MUTCD for details. Warrant 8, Roadway Network:	No No		Warrant 7, Crash Experience: # of accidents "correctable by signalization" occuring in the last 12 months: (threshold is 5 crashes in last year correctable by signalization)	No
See MUTCD for details.	140		Total Crashes 2015-2019	4

based on MassDOT crash portal

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: Central Street at Cedar Street
Major Street Direction: Eastbound-Westbound ▼

Year: 2029 Condition: Build Conditions

Operating speed on major roadway: 35 mph Required

Number of approaches: 3 approach volumes

				Adjusted		
Warrant 1	EIGHT-HOUR VEHICULAR VO	DLUME	Minin	num* Minimum**		
Warrant 1A	MINIMUM VEHICULAR VOLUM	ME (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	50	00 500		
	Minor Street :	1 Lane(s) on each approach	15	50 150		
Warrant 1B	INTERRUPTION OF CONTINU	IOUS TRAFFIC (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	75	50 750		
	Minor Street :	1 Lane(s) on each approach	7:	5 75		
80 PERCEN	80 PERCENT SATISFACTION OF WARRANT 1A AND WARRANT 1B					
	Major Street :	1 Lane(s) on each approach	40	00 600		
	Minor Street :	1 Lane(s) on each approach	12	20 60		

Warrant 2 FOUR HOUR VEHICULAR VOLUME

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-1 or 4C-2.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

Warrant 3 PEAK HOUR VOLUME

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

	Entering Vol.		Entering Vol.	Entering Vol. on Major Road		Meets the following volume-based warrants?					
Н	lour		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
6:00 -	7:00	AM	112	355	133	488	No	No	No	No	No
7:00 -	8:00	AM	230	723	248	971	Yes	Yes	Yes	Yes	Yes
8:00 -	9:00	AM	235	736	253	989	Yes	Yes	Yes	Yes	Yes
9:00 -	10:00	AM	173	551	240	791	Yes	Yes	Yes	Yes	No
10:00 -	11:00	AM	147	469	249	718	No	No	Yes	No	No
11:00 -	12:00	AM	155	492	277	769	Yes	Yes	Yes	No	No
12:00 -	1:00	PM	158	497	281	778	Yes	Yes	Yes	Yes	No
1:00 -	2:00	PM	169	346	439	785	Yes	Yes	Yes	Yes	No
2:00 -	3:00	PM	177	363	433	795	Yes	Yes	Yes	Yes	No
3:00 -	4:00	PM	204	419	404	824	Yes	Yes	Yes	Yes	No
4:00 -	5:00	PM	193	398	473	870	Yes	Yes	Yes	Yes	No
5:00 -	6:00	PM	155	320	604	923	Yes	Yes	Yes	Yes	No
6:00 -	7:00	PM	147	304	509	812	No	Yes	Yes	No	No
							Yes	Yes	Yes	Yes	Yes
						Warrants		1		2	3
						Met?		Yes		Yes	Yes

Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

Warrant 9, Grade Crossing:

NON-VOLUME-BASED WARRANTS

	NON	-VOLUI	IE-BASED WARRANTS		
Warrant 4, Minimum Pedestrian Volume:	No]_	Warrant 5, School Crossing:	No	
*107 pedestrians per hour is the minimur	m thresho	See MUTCD for details.			
Peak Four Hour Pedestrian Volumes:	<100	7:00 AM			
	<100	8:00 AM			
	<100	4:00 PM			
	<100	5:00 PM			
Warrant 6, Coordinated Signal System:	No	1	Warrant 7, Crash Experience:	No	
See MUTCD for details.		_	# of accidents "correctable by		
			signalization" occuring in the last 12 months:		
			(threshold is 5 crashes in last year correctable by signalization)		
Warrant 8, Roadway Network:	No	1			
See MUTCD for details.		-	Total Crashes 2015-2019	4	

based on MassDOT crash portal

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: Central Street at Webster Street
Major Street Direction: Eastbound-Westbound ▼

Year: 2022 Condition: Existing Conditions

Operating speed on major roadway:35 mphRequiredNumber of approaches:3approach volumes

Warrant 1	EIGHT-HOUR VEHICULAR VOL	<u>-UME</u>	Minimum*	Adjusted Minimum**
Warrant 1A	MINIMUM VEHICULAR VOLUM	E (8 hours of day)		
	Major Street :	1 Lane(s) on each approach	500	500
	Minor Street :	1 Lane(s) on each approach	150	150
Warrant 1B	INTERRUPTION OF CONTINUO			
	Major Street :	1 Lane(s) on each approach	750	750
	Minor Street :	1 Lane(s) on each approach	75	75
80 PERCEN	T SATISFACTION OF WARRANT	Warrant 1A	Warrant 1B	
	Major Street :	1 Lane(s) on each approach	400	600
	Minor Street :	1 Lane(s) on each approach	120	60

Warrant 2 FOUR HOUR VEHICULAR VOLUME

Major Street: 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-1 or 4C-2.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

Warrant 3 PEAK HOUR VOLUME

Major Street: 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

	Entering Vol.		Entering Vol.	Entering Vol. on Major Road		Meets the following volume-based warrants?					
Ho	our		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
6:00 -	7:00	AM	64	347	198	545	No	No	No	No	No
7:00 -	8:00	AM	128	700	369	1069	No No	Yes	Yes	Yes	No
8:00 -	9:00	AM	129	705	375	1080	No	Yes	Yes	Yes	No
9:00 -	10:00	AM	99	539	351	890	No	Yes	No	No	No
10:00 -	11:00	AM	84	458	364	822	No	Yes	No	No	No
11:00 -	12:00	AM	88	482	395	877	No	Yes	No	No	No
12:00 -	1:00	PM	88	481	402	883	No	Yes	No	No	No
1:00 -	2:00	PM	92	341	553	894	No	Yes	No	No	No
2:00 -	3:00	PM	97	358	545	903	No	Yes	No	No	No
3:00 -	4:00	PM	112	417	506	923	No	Yes	No	No	No
4:00 -	5:00	PM	107	397	583	980	No	Yes	No	Yes	No
5:00 -	6:00	PM	86	320	745	1065	No	Yes	No	No	No
6:00 -	7:00	PM	83	307	649	956	No	Yes	No	No	No
							No	Yes	No	No	No
						Warrants		1		2	3
						Met?		Yes		No	No

Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

Warrant 9, Grade Crossing:

NON-VOLUME-BASED WARRANTS

	NOI	JN-VOLUME-BASED WARRANTS						
Warrant 4, Minimum Pedestrian Volume: *107 pedestrians per hour is the minin	No num thresh	old	Warrant 5, School Crossing: See MUTCD for details.	No				
Peak Four Hour Pedestrian Volumes:	<100	7:00 AM						
	<100	8:00 AM						
	<100	4:00 PM						
	<100	5:00 PM						
Warrant 6, Coordinated Signal System:	No		Warrant 7, Crash Experience:	No				
See MUTCD for details.			# of accidents "correctable by					
			signalization" occuring in the last 12 months:					
			(threshold is 5 crashes in last year correctable by signalization)					
Warrant 8, Roadway Network:	No							
Con MUTCD for details			Total Crashes 2015 2010	4				

See MUTCD for details. <u>Total Crashes 2015-2019</u> based on MassDOT crash portal

last updated: 08/05/05 [version]

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: **Central Street at Webster Street** Major Street Direction: Eastbound-Westbound

Year: 2029 Condition: No Build Conditions

Operating speed on major roadway: 35 mph Required Number of approaches: approach volumes 3

				Adjusted		
Warrant 1	EIGHT-HOUR VEHICULAR VO	DLUME	Minin	num* Minimum**		
Warrant 1A	MINIMUM VEHICULAR VOLUM	ME (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	50	00 500		
	Minor Street :	1 Lane(s) on each approach	15	50 150		
Warrant 1B	INTERRUPTION OF CONTINU	IOUS TRAFFIC (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	75	50 750		
	Minor Street :	1 Lane(s) on each approach	7:	5 75		
80 PERCEN	80 PERCENT SATISFACTION OF WARRANT 1A AND WARRANT 1B					
	Major Street :	1 Lane(s) on each approach	40	00 600		
	Minor Street :	1 Lane(s) on each approach	12	20 60		

FOUR HOUR VEHICULAR VOLUME Warrant 2

Major Street: If "verify" indicated, see Figure 4C-1 or 4C-2. 1 Lane(s) on each approach

Minor Street: 25 = accuracy of regression equations 1 Lane(s) on each approach

PEAK HOUR VOLUME Warrant 3

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

	Entering Vol.		Entering Vol.	Entering Vol. on Major Road		Meets the following volume-based warrants?					
H	our		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
6:00 -	7:00	AM	67	374	213	587	No	No	No	No	No
7:00 -	8:00	AM	135	755	398	1153	No	Yes	Yes	Yes	No
8:00 -	9:00	AM	136	760	405	1165	No	Yes	Yes	Yes	No
9:00 -	10:00	AM	104	581	379	960	No	Yes	No	No	No
10:00 -	11:00	AM	89	494	392	886	No	Yes	No	No	No
11:00 -	12:00	AM	93	519	427	946	No	Yes	No	No	No
12:00 -	1:00	PM	93	518	435	953	No	Yes	No	No	No
1:00 -	2:00	PM	100	367	602	969	No	Yes	No	No	No
2:00 -	3:00	PM	105	386	593	979	No	Yes	No	No	No
3:00 -	4:00	PM	123	449	551	1000	No	Yes	Yes	Yes	No
4:00 -	5:00	PM	117	428	634	1062	No	Yes	No	Yes	No
5:00 -	6:00	PM	94	345	810	1155	No	Yes	No	Yes	No
6:00 -	7:00	PM	90	331	706	1037	No	Yes	No	No	No
							No	Yes	No	Yes	No
						Warrants		1		2	3
						Met?		Yes		Yes	No

Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

	NON-VO	ME-BASED WARRANTS	
Warrant 4, Minimum Pedestrian Volume: *107 pedestrians per hour is the minimum	No threshold	Warrant 5, School Crossing: See MUTCD for details.	No
<	\$100 7:0 \$100 8:0 \$100 4:0 \$100 5:0	M M	
See MUTCD for details.	No	Warrant 7, Crash Experience: # of accidents "correctable by signalization" occuring in the last 12 months: (threshold is 5 crashes in last year correctable by signalization)	No
Warrant 8, Roadway Network: See MUTCD for details.	No	<u>Total Crashes 2015-2019</u>	1

based on MassDOT crash portal Warrant 9, Grade Crossing:

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

TRAFFIC SIGNAL WARRANT ANALYSIS (VOLUME BASED)

Intersection: **Central Street at Webster Street** Major Street Direction: Eastbound-Westbound

Year: 2029 Condition: **Build Conditions**

Operating speed on major roadway: 35 mph Required Number of approaches: approach volumes 3

				Adjusted		
Warrant 1	EIGHT-HOUR VEHICULAR VO	DLUME	Minin	num* Minimum**		
Warrant 1A	MINIMUM VEHICULAR VOLUM	ME (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	50	00 500		
	Minor Street :	1 Lane(s) on each approach	15	50 150		
Warrant 1B	INTERRUPTION OF CONTINU	IOUS TRAFFIC (8 hours of day)				
	Major Street :	1 Lane(s) on each approach	75	50 750		
	Minor Street :	1 Lane(s) on each approach	7:	5 75		
80 PERCEN	80 PERCENT SATISFACTION OF WARRANT 1A AND WARRANT 1B					
	Major Street :	1 Lane(s) on each approach	40	00 600		
	Minor Street :	1 Lane(s) on each approach	12	20 60		

FOUR HOUR VEHICULAR VOLUME Warrant 2

Major Street: If "verify" indicated, see Figure 4C-1 or 4C-2. 1 Lane(s) on each approach

Minor Street: 25 = accuracy of regression equations 1 Lane(s) on each approach

PEAK HOUR VOLUME Warrant 3

Major Street : 1 Lane(s) on each approach If "verify" indicated, see Figure 4C-3 or 4C-4.

Minor Street: 1 Lane(s) on each approach 25 = accuracy of regression equations

	Entering Vol.		Entering Vol.	Entering Vol. on Major Road		Meets the following volume-based warrants?					
H	lour		Minor Road+	Eastbound	Westbound	On Major Rd	1A	1B	80%(1A&1B)	2	3
6:00 -	7:00	AM	67	384	214	598	No	No	No	No	No
7:00 -	8:00	AM	135	784	402	1186	No	Yes	Yes	Yes	No
8:00 -	9:00	AM	136	801	411	1212	No	Yes	Yes	Yes	No
9:00 -	10:00	AM	104	594	388	982	No	Yes	No	No	No
10:00 -	11:00	AM	89	505	404	909	No	Yes	No	No	No
11:00 -	12:00	AM	93	531	448	979	No	Yes	No	No	No
12:00 -	1:00	PM	93	539	455	994	No	Yes	No	No	No
1:00 -	2:00	PM	100	385	615	1000	No	Yes	No	No	No
2:00 -	3:00	PM	105	403	605	1008	No	Yes	No	Yes	No
3:00 -	4:00	PM	123	464	568	1031	No	Yes	Yes	Yes	No
4:00 -	5:00	PM	117	438	665	1104	No	Yes	No	Yes	No
5:00 -	6:00	PM	94	352	848	1200	No	Yes	No	Yes	No
6:00 -	7:00	PM	90	334	710	1044	No	Yes	No	No	No
							No	Yes	No	Yes	No
						Warrants		1		2	3
						Met?		Yes		Yes	No

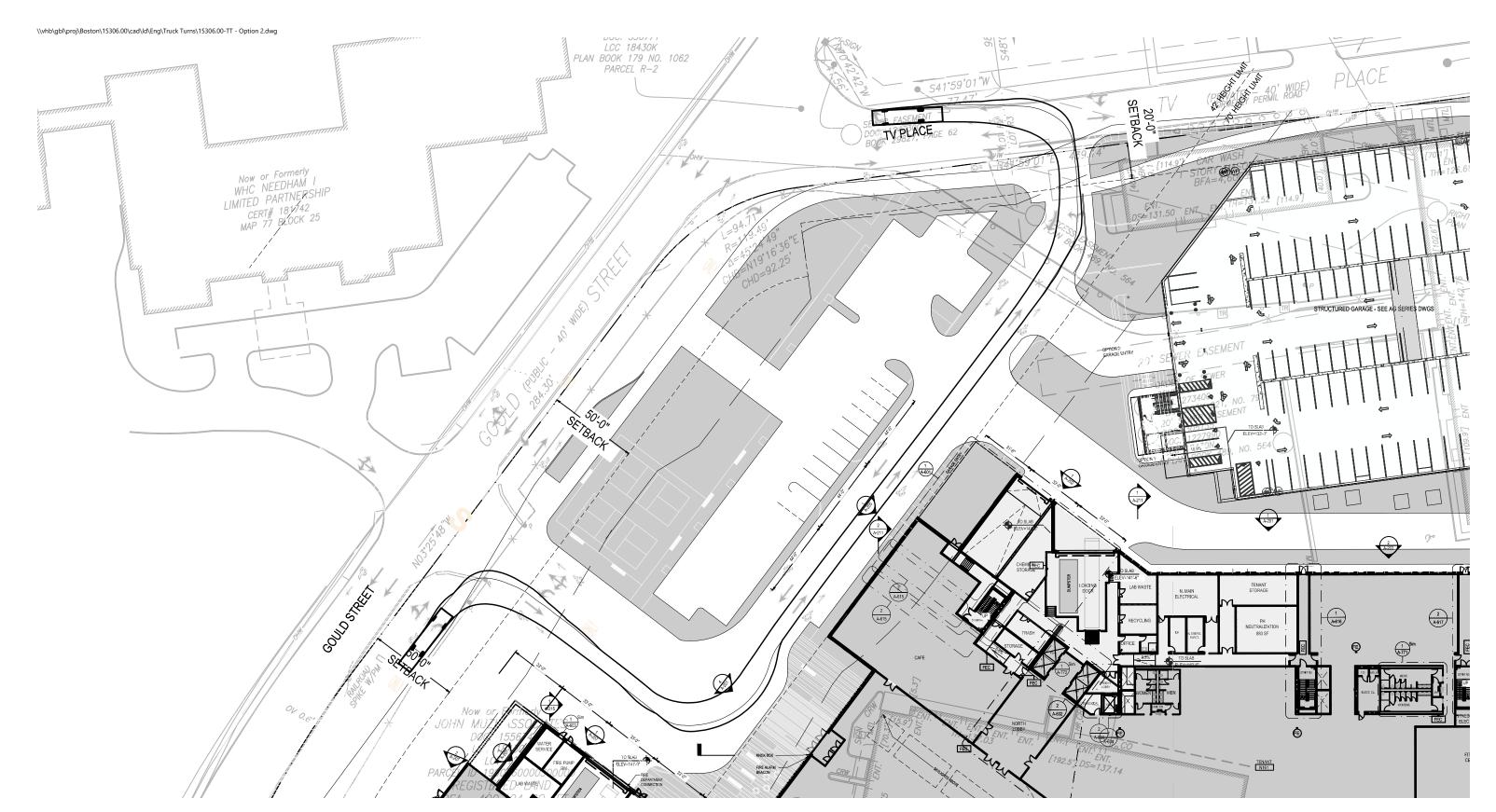
Note: Major road volumes include through and left-turning vehicles.

Note: Minor Road volumes include 100% of left-turning volumes and 25% of right-turning volumes

NON-VOLUME-BASED WARRANTS

Warrant 4, Minimum Pedestrian Volume: *107 pedestrians per hour is the minir	No num thresho	old	Warrant 5, School Crossing: See MUTCD for details.	No
Peak Four Hour Pedestrian Volumes:	<100 <100 <100 <100	7:00 AM 8:00 AM 4:00 PM 5:00 PM		
Warrant 6, Coordinated Signal System: See MUTCD for details.	No		Warrant 7, Crash Experience: # of accidents "correctable by signalization" occuring in the last 12 months: (threshold is 5 crashes in last year correctable by signalization)	No
Warrant 8, Roadway Network: See MUTCD for details.	No		Total Crashes 2015-2019	1

based on MassDOT crash portal Warrant 9, Grade Crossing:

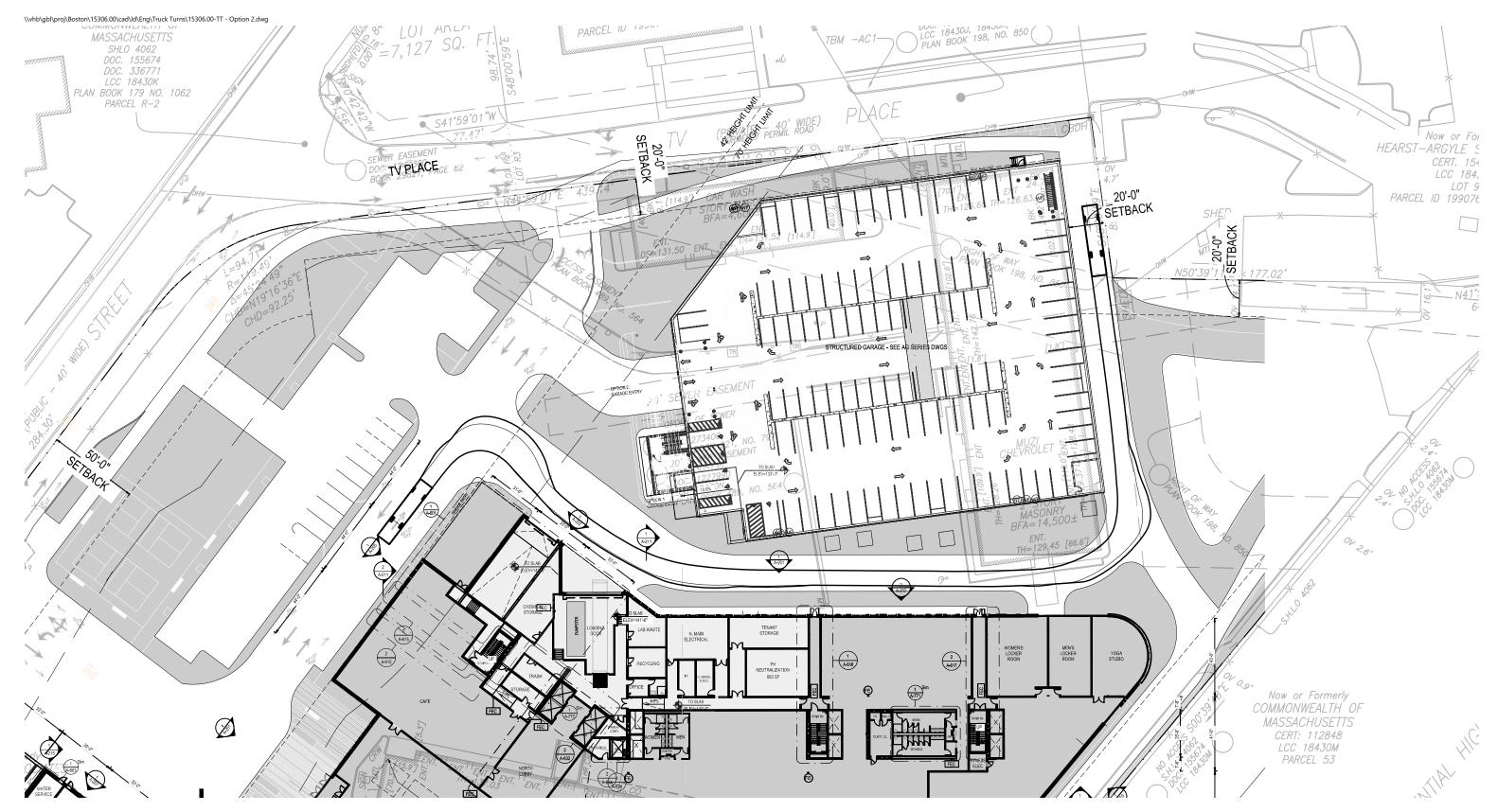

^{*}From the criteria described for the warrant in the MUTCD.

^{**}If the operating speed is higher than 40mph then the volumes can be adjusted to 70%. (If no adjusted minimum, the minimum from the previous column is shown)

⁺If more than one approach, report the approach that has the higher volume.

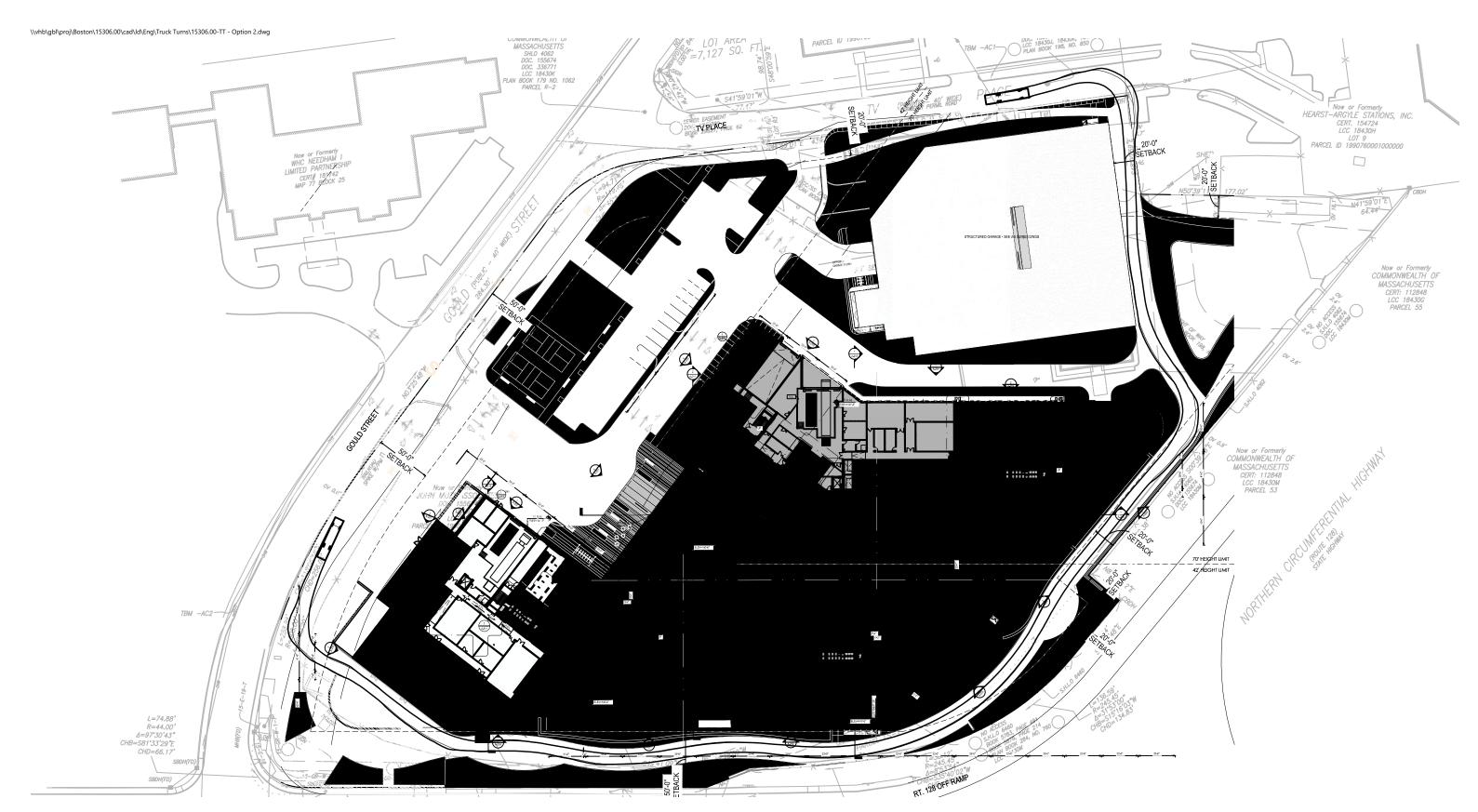
Turning	Movement	Diagrams
---------	----------	-----------------

Comment 33



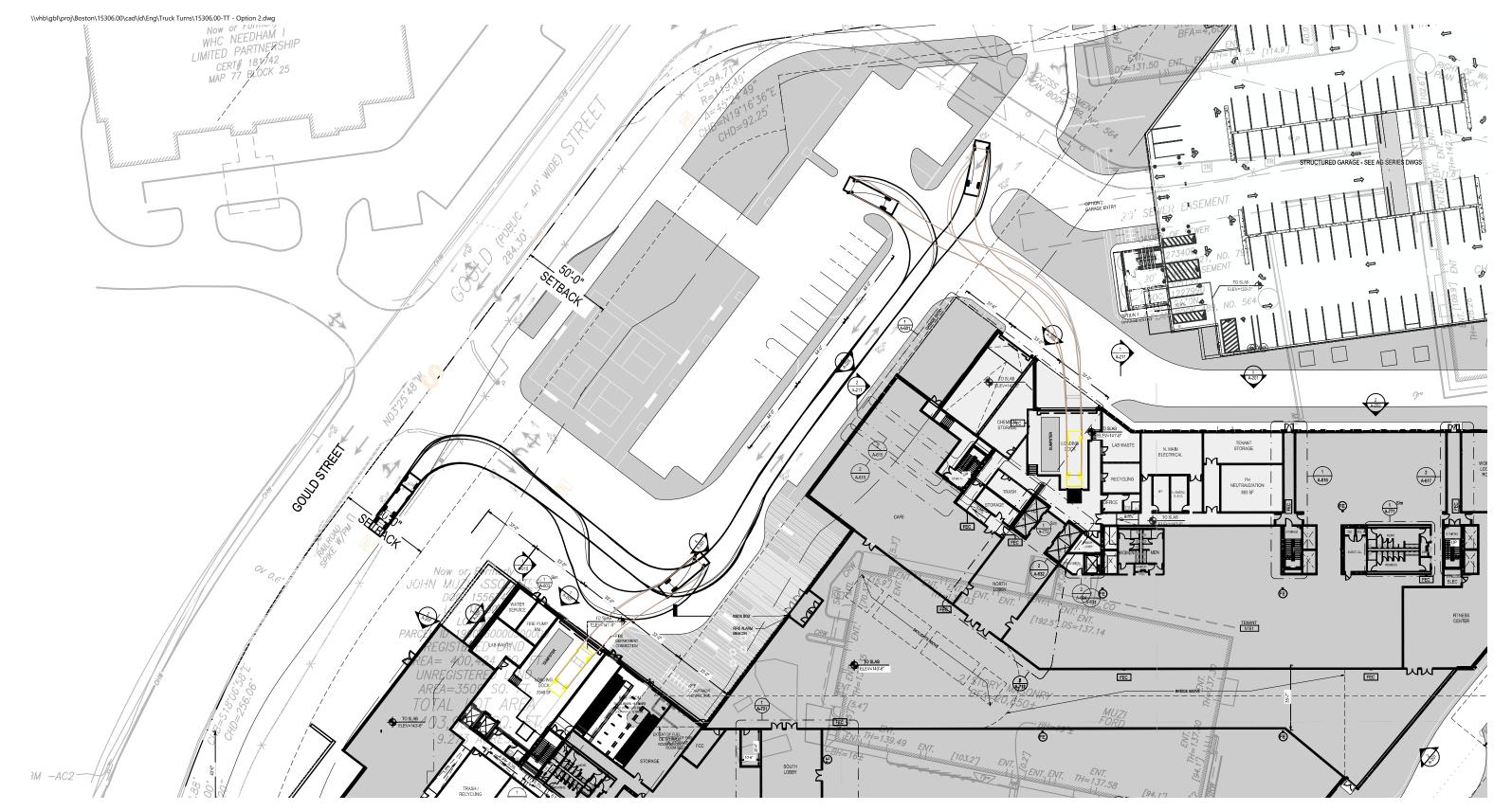
Firetruck Turn Figure 5A 557 Highland Ave Needham, MA

Source: Prepared for:



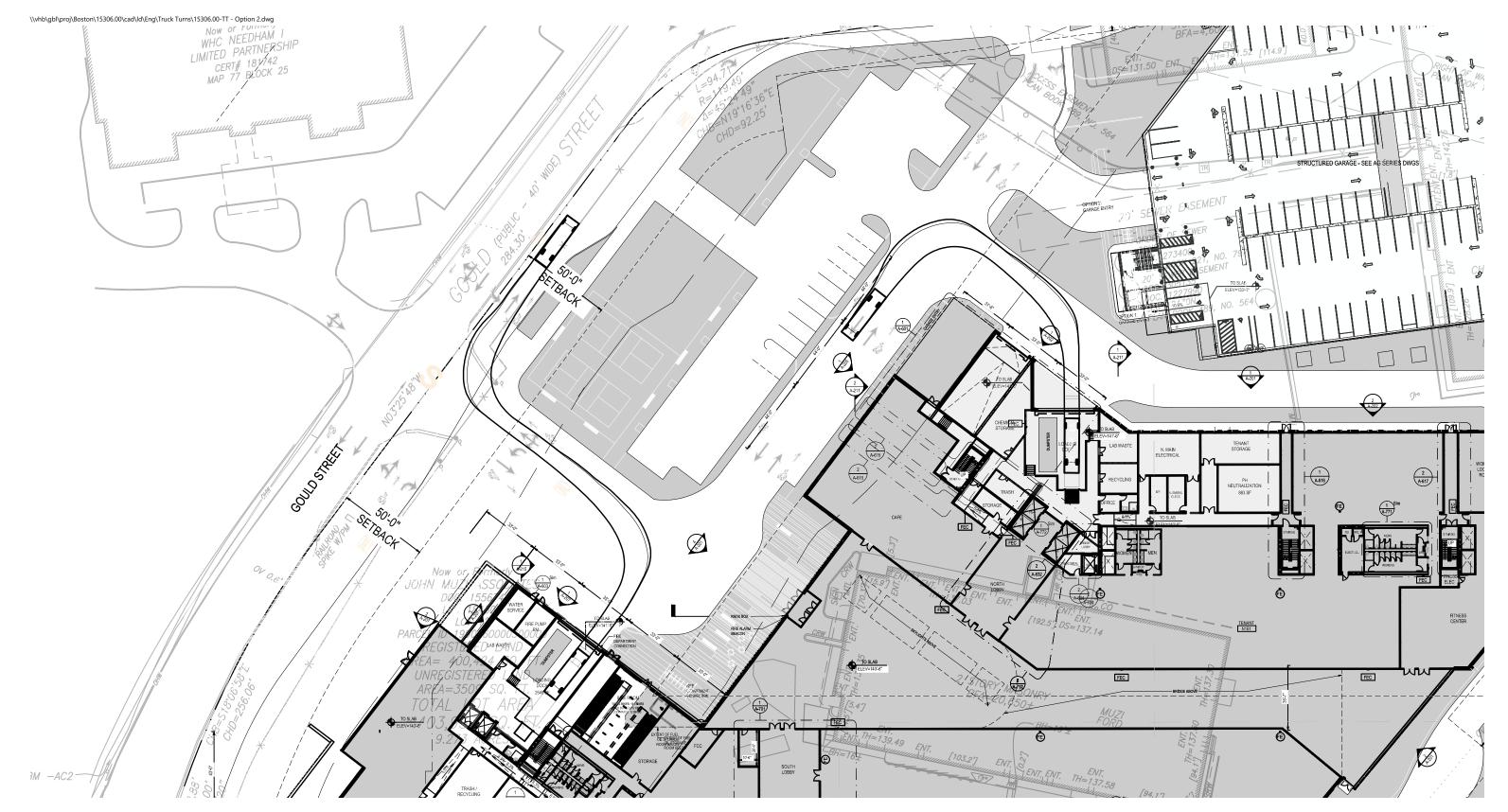
Firetruck Turn Figure 5B 557 Highland Ave Needham, MA

Source: Prepared for:

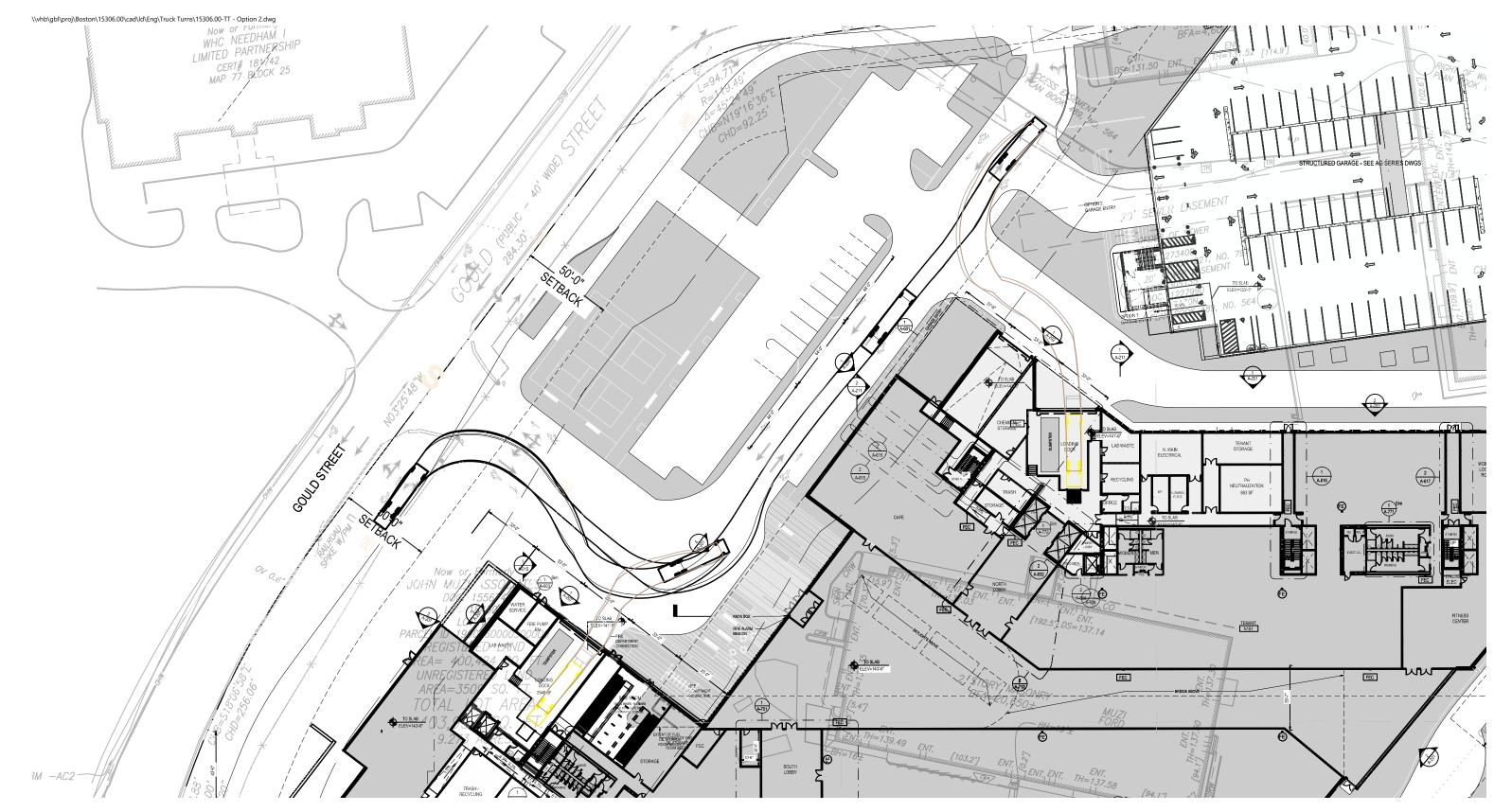


Firetruck Turn Figure 5C 557 Highland Ave Needham, MA

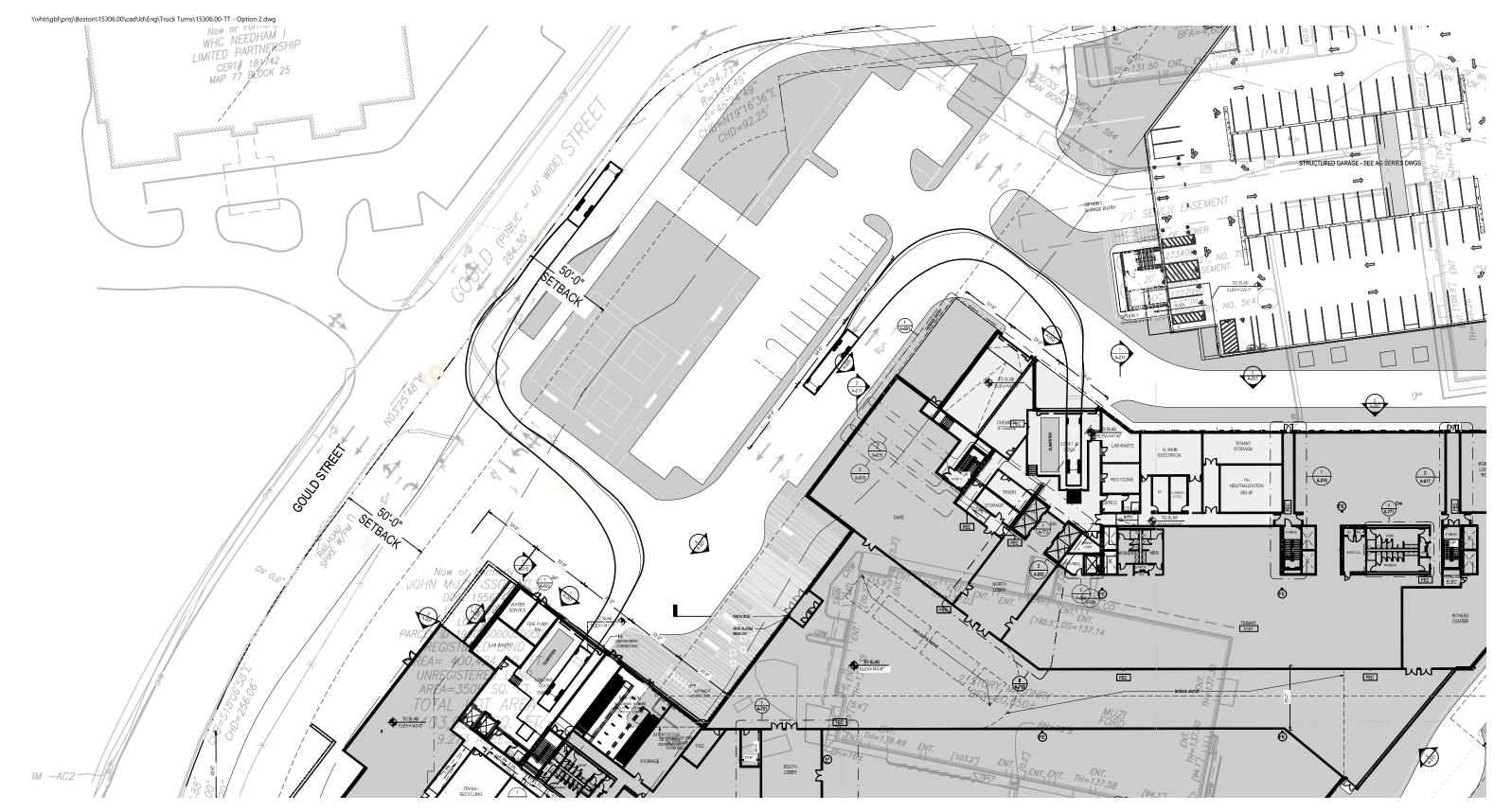
Source: Prepared for:



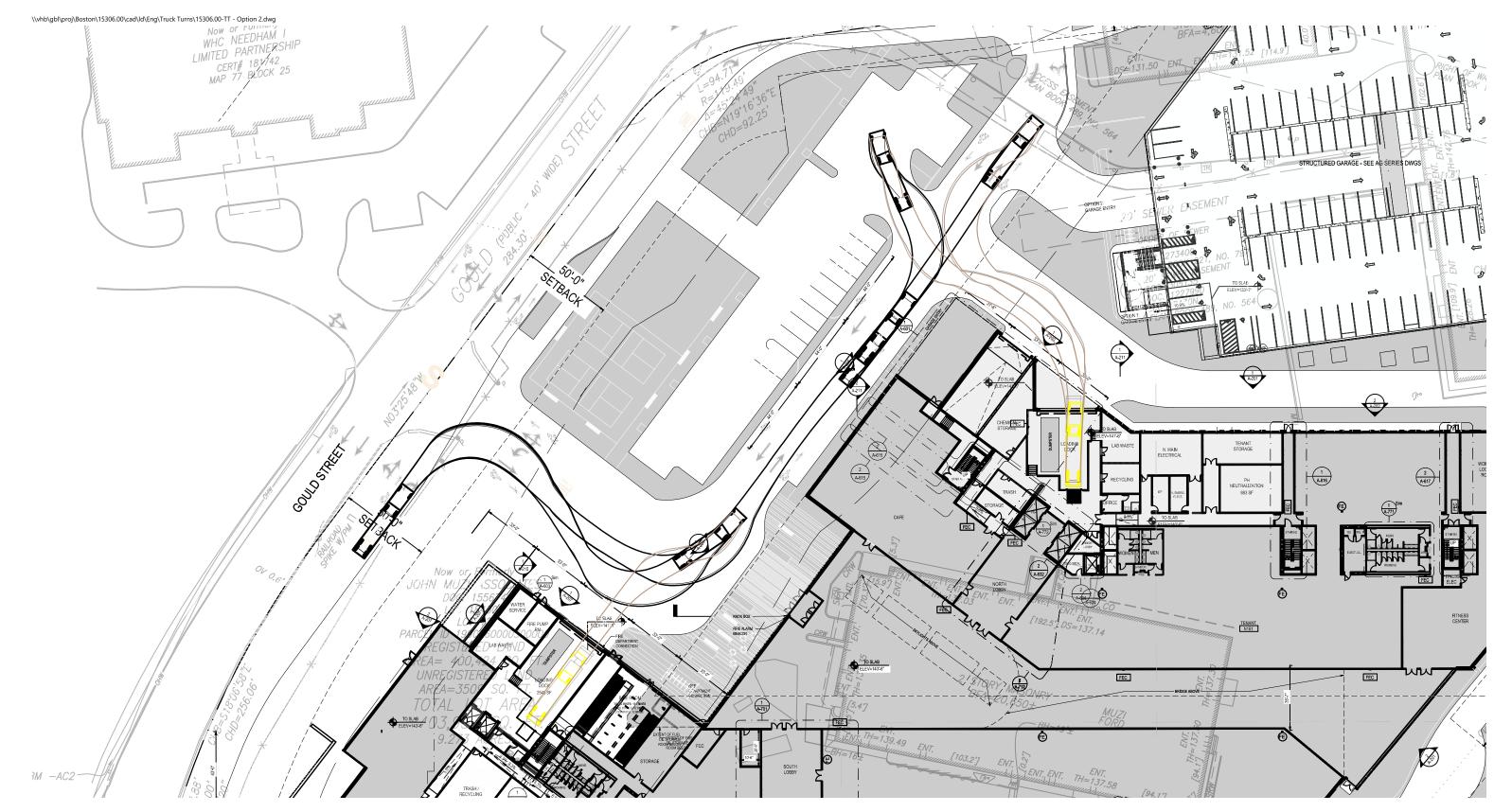
SU-30 Truck Turn Figure 1A 557 Highland Ave Needham, MA



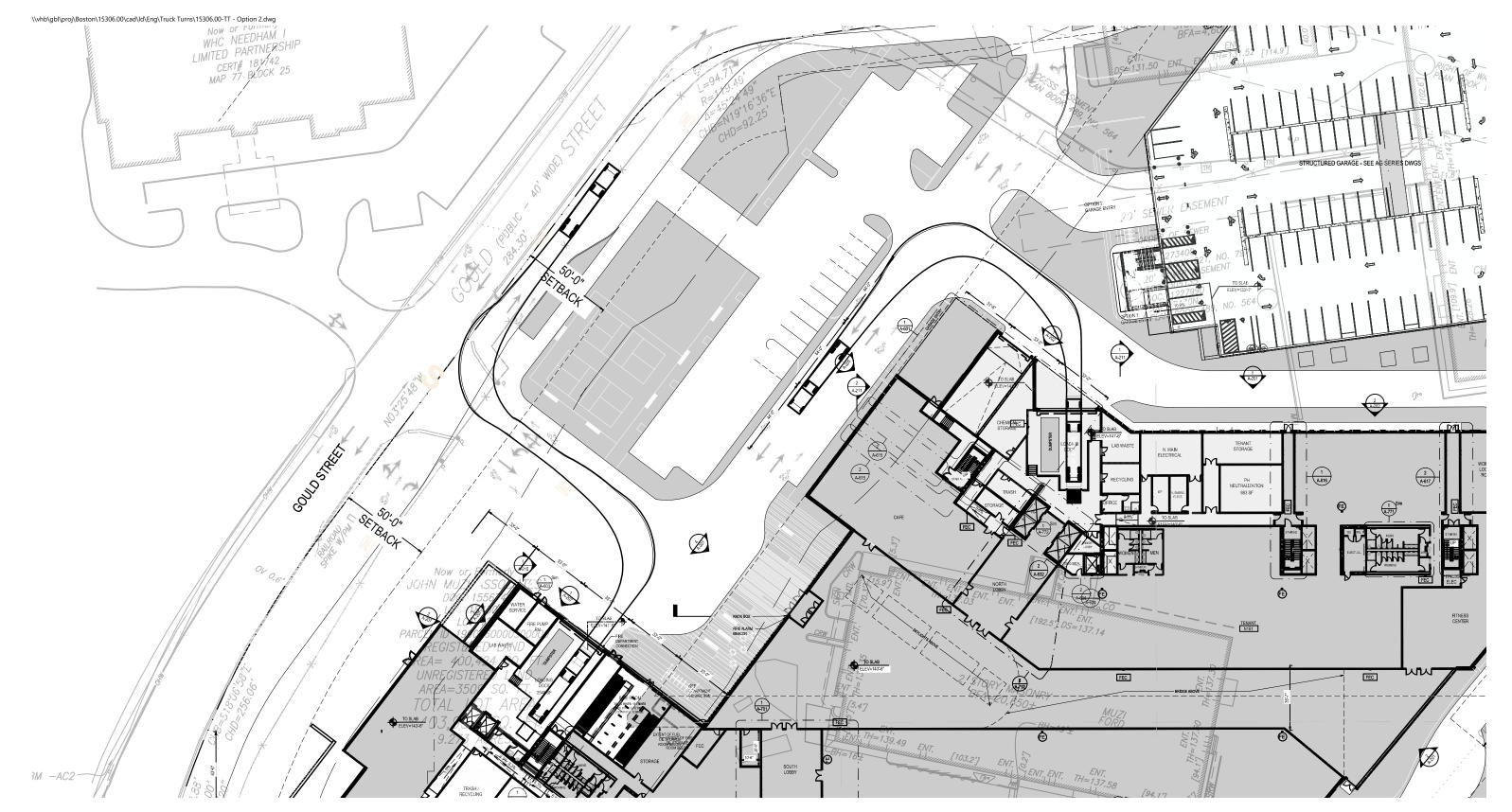
SU-30 Truck Turn Figure 1B 557 Highland Ave Needham, MA



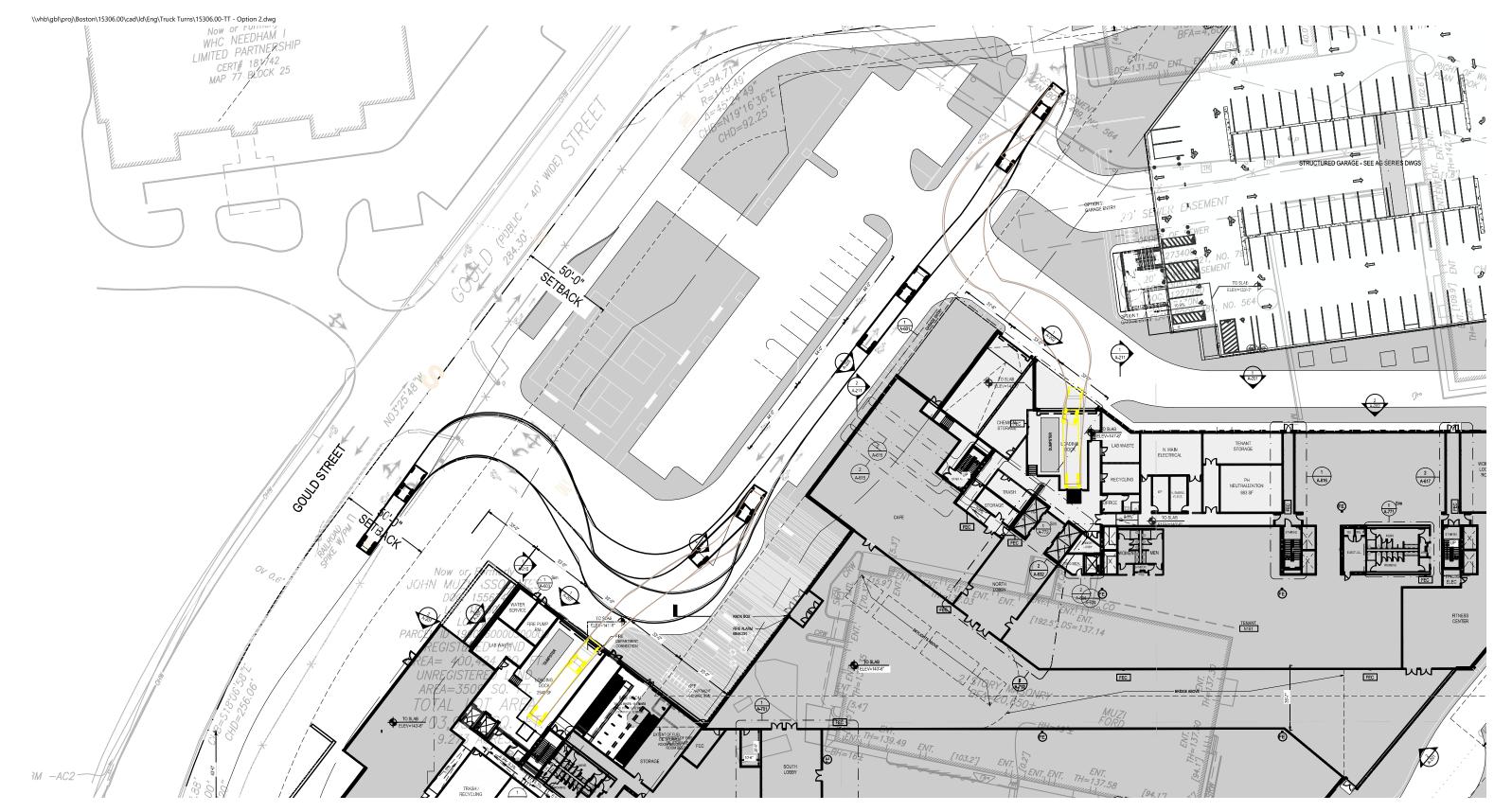
SU-40 Truck Turn Figure 2A 557 Highland Ave Needham, MA



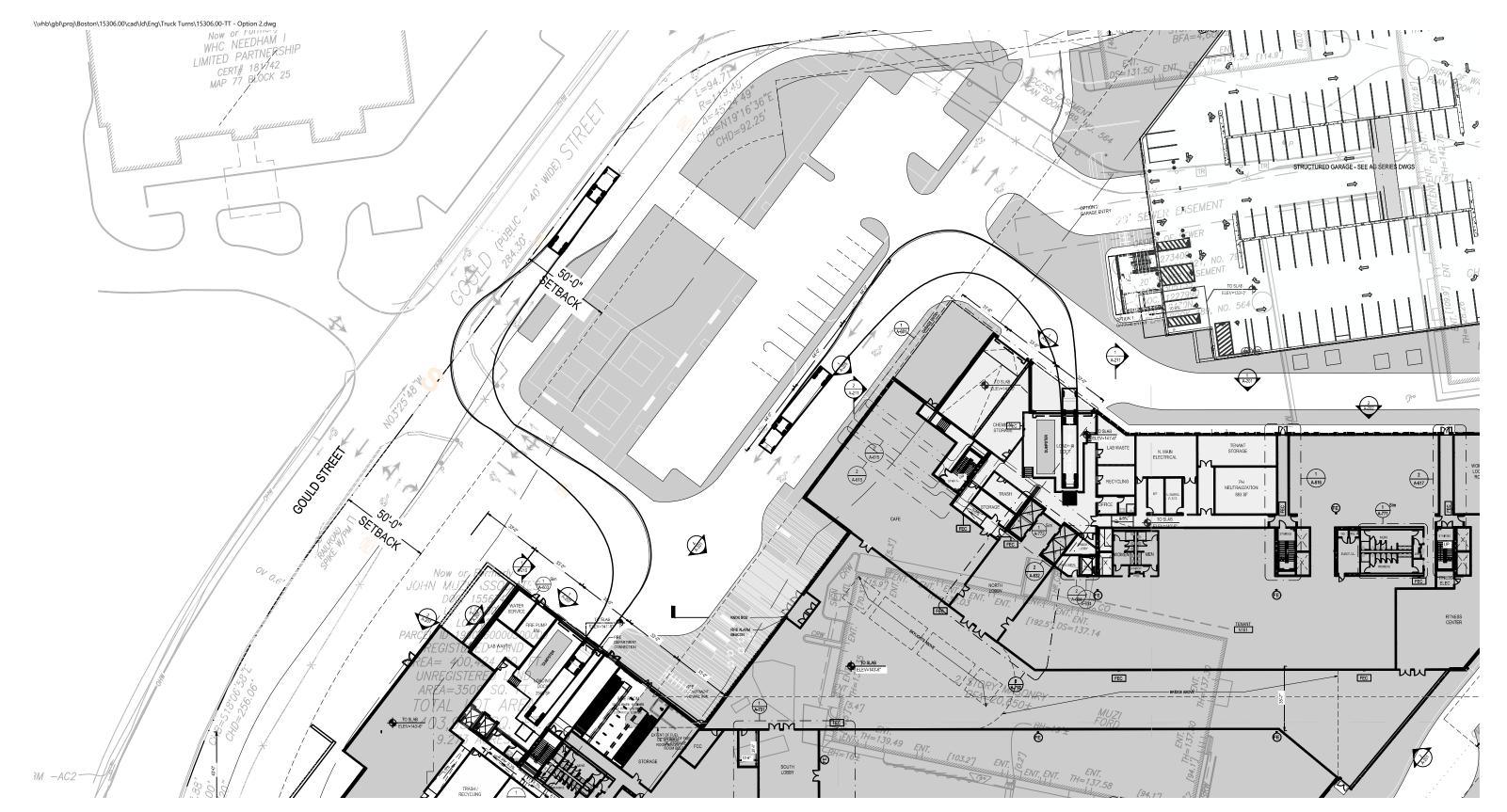
SU-40 Truck Turn Figure 2A 557 Highland Ave Needham, MA



WB-40 Truck Turn Figure 3A 557 Highland Ave Needham, MA



WB-40 Truck Turn Figure 3B 557 Highland Ave Needham, MA



WB-50 Truck Turn Figure 4A 557 Highland Ave Needham, MA

WB-50 Truck Turn Figure 4B 557 Highland Ave Needham, MA

EXHIBIT D

RESPONSE TO NITSCH COMMENTS ON TRANSPORTATION IMPACT AND ACCESS STUDY (557 HIGHLAND AVENUE)

[see attached]

To: Holly Charbonnier

Needham Heights Alliance

Project #: 15306.00

Date: June 29, 2022

From: Sean Manning, PE, PTOE Matthew Duranleau, PE Ariella Liebman, EIT Re: Response to Transportation Impact and Access Study
Traffic Peer Review Comments dated June 9, 2022

By Nitsch Engineering 557 Highland Avenue Needham, Massachusetts

Overview

VHB has received and reviewed the Transportation Impact and Access (TIA) study Transportation Engineering Peer Review submitted to the Needham Heights Alliance by Nitsch Engineering, dated June 9, 2022, for the proposed 557 Highland Avenue redevelopment in Needham, Massachusetts. This memorandum summarizes VHB's responses to the comments in that review. Each comment raised by the reviewer is listed below followed by the response by VHB. The comments follow the format and structure outlined in the Transportation Engineering Peer Review.

Since the submittal of the Transportation Engineering Peer Review, the Proponent has received feedback from the community and the Town of Needham on the proposed Gould Street off-site improvements, including the desire for more family-friendly bicycle accommodations and the wish to reduce the amount of new pavement added on Gould Street. Based on this feedback, new additional improvement concepts have been developed. Concept plans for the following three improvement alternatives along Gould Street are included in the Attachments to this memorandum:

- Option 1: Previously Proposed Concept
- > Option 2: Two-Way Separated Bicycle Lanes on East Side with Reduced Gould Street Cross-Section
- > Option 3: Two-Way Separated Bicycle Lanes on West Side with Reduced Gould Street Cross-Section

The two additional improvement concept plans include dedicated sidewalk-level bicycle facilities in each direction along Gould Street between Highland Avenue and just north of TV Place. In addition, the two additional concepts eliminate the Gould Street dedicated northbound right-turn lane into TV Place and the dedicated southbound right-turn lane onto Highland Avenue based on feedback from the Town of Needham to reduce the amount of pavement. While these turn lanes were included in the initial concept design, the lanes are not required to provide an adequate level of operations for vehicles. Intersection traffic analyses for the new concepts are included in the Attachments to this memorandum.

Peer Review Comments

Existing Conditions

Study Area

1. The Applicant studied/examined 20 intersections including:

Ref: 15306.00 June 29, 2022

Page 2

- Central Avenue at Cedar Street
- > Central Avenue at Webster Street
- Central Avenue at Gould Street
- > Central Avenue at Hampton Avenue
- Central Avenue at River Park Street
- > Gould Street at Ellis Street
- Gould Street at Kearney Road
- Gould Street at Station Road
- Gould Street at Noanett Road
- Gould Street at TV Place
- > Gould Street at Muzi Ford/Wingate Residences driveways
- > Highland Avenue at West Street
- > Highland Avenue at Hunnewell Street
- > Highland Avenue at Webster Street
- > Highland Avenue at Gould Street / Hunting Road
- > Highland Avenue at I-95 SB Ramps
- > Highland Avenue at I-95 NB Ramps
- > Highland Avenue at 1st Avenue
- > Highland Avenue at 2nd Avenue
- > Kendrick Street at Hunting Road

Nitsch agrees with the selected Study Area.

Applicant Response: No response needed

Existing Traffic Data

2. Traffic volumes were collected during the weekday morning and weekday evening peak periods at each of the study area intersections. Applicant indicates that since traffic volumes may not have represented normal travel conditions due to the coronavirus (COVID-19) pandemic, they used MassDOT guidelines, and 2019 data were considered as existing traffic volumes. At locations where pre-pandemic counts were not available, new traffic counts were conducted in July 2021 and adjusted to represent "pre-pandemic" conditions based on traffic volumes at nearby intersections. Nitsch agrees with the Applicant's data collection methodology.

Applicant Response: No response needed

Ref: 15306.00 June 29, 2022 Page 3

Seasonal Adjustment

3. The Applicant utilized MassDOT's 2019 Weekday Seasonal Adjustment Factor data sheet to quantify the seasonal variation of traffic volumes in the area. *Nitsch finds the Applicant's methodology to be conservative and thereby acceptable.*

Applicant Response: No response needed

Public Transportation

4. Nitsch finds the Applicant's discussion on public transportation in the area to be adequate.

Applicant Response: No response needed

Pedestrian and Bike Facilities

5. Nitsch finds the Applicant's discussion on existing pedestrian and bicycle facilities to be adequate.

Applicant Response: No response needed

Safety Analysis

6. The Applicant examined crash data from the MassDOT Crash Database for the years of 2015 to 2019 at all study area intersections. *Nitsch finds the crash data analysis appropriate*.

Applicant Response: No response needed

Future Conditions

7. Traffic volumes in the study area were projected to the year 2029, reflecting a typical seven-year traffic-planning horizon as required by MassDOT. *Nitsch finds the Applicant's methodology to be acceptable*.

Applicant Response: No response needed

Background Growth

8. Background traffic growth was examined the historic traffic data, project-specific growth and roadway improvement projects. The Applicant determined that a growth rate of 1.0 percent to be appropriate for the study. *Nitsch finds the Applicant's methodology to be conservative and thereby acceptable.*

Applicant Response: No response needed

Ref: 15306.00 June 29, 2022 Page 4

Build Conditions

Trip Generation

- 9. Projected trip generation for the proposed development was estimated using the following Land Use Codes (LUC) from the Institute of Transportation Engineers' (ITE) Trip Generation Manual, 11th Edition:
 - > LUC 710 General Office Building
 - > LUC 760 Research and Development Center
 - > LUC 822 Retail Plaza (<40,000 SF)

Nitsch finds the Applicant's trip generation estimation acceptable.

Applicant Response: No response needed

Internal Capture Trips and Mode Share

10. Nitsch finds the Applicant's discussion and methodology for these sections to be acceptable.

Applicant Response: No response needed

Pass-By-Trips

11. For this evaluation, the Applicant used ITE pass-by rates for LUC 821 (Shopping Plaza) for the retail trip generation and applied to existing trips on Gould Street. ITE identifies LUC 821 as a Shopping Plaza (40-150KSF). For project related trip generation, the Applicant used LUC 822-Retail Plaza (<40K SF) since the retail portion of the project consists of approximately 10,000 SF. However, for pass-by-trips they used LUC 821.

Nitsch requests the Applicant provide additional information detailing the estimated pass-by-trips for a LUC 822.

Applicant Response: The most recent edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th edition, 2021) was reviewed to determine trip generation characteristics and applicable pass-by rates for the retail portion of the Site. Pass-by rates are provided for different land uses in the Appendix to the Trip Generation Manual. As the retail portion of the Site is proposed to consist of 10,000 square feet (SF) of space, the most applicable land use code (LUC) was determined to be LUC 822 (Strip Retail Plaza (<40 ksf)). However, no pass-by rates are included in the Appendix to the Trip Generation Manual for LUC 822, as data have not been provided. Instead, the pass-by rates for LUC 821 (Shopping Plaza (40-150 ksf)) were applied to the Site-generated retail trips. While the two land use codes are not identical, it is expected that the pass-by rates for LUC 822 and LUC 821 would be similar, as the two uses consist of the same types of retail establishments; the only difference between the two land use codes is the total SF of retail included in a Site. Therefore, due to a lack of specific pass-by rate data for LUC 822, the pass-by rates for LUC 821 are expected to provide an accurate estimate of the pass-by trips for the proposed retail uses on Site.

It is also important to note that pass-by trips are only applicable to the retail portion of the Project. Retail constitutes only a very small portion of the total Project (approximately 10,000 SF, or roughly 2 percent of the Project). The retail pass-by trips total only 4 trips during the weekday morning peak hour and 30 trips during

Ref: 15306.00 June 29, 2022

Page 5

the evening peak hour. Exclusion of these trips from the project trip generation would have no measurable impact on the findings of the TIA or the level of transportation improvements and mitigation that is being proposed.

Project-generated Trips

12. As stated by the Applicant in the report, the pass-by-trips include trips for the retail uses already traveling on the roadway network under Existing Conditions. However, these trips still enter and exit the project site. They should only be adjusted for adjacent roadways, but not for entering and exiting the project site. **Nitsch requests the Applicant provide update Table 5**, as well as Figures 11 through 14. Also, the capacity analysis for Build Condition may need to be revised.

<u>Applicant Response</u>: VHB agrees that pass-by trips still enter and exit the Project Site and should only be adjusted for adjacent roadways. Table 5 in the TIA provides a summary of the total Project-generated trips and includes both the total number of vehicles expected to enter and exit the Project Site as well as the total net new trips added to the roadway network. The "Adjusted Vehicle Trips – Total" column in Table 5 presents the number of total trips to enter and exit the Project Site and the "Total Net New Vehicle Trips" column in Table 5 presents the new trips added to the roadway, which does not include the pass-by trips or the existing trips already on the roadway that were generated by the previous uses on-Site.

Figures 11 and 12 presented in the TIA only showed the total net new vehicle trips and did not include the pass-by trips that will enter and exit the Project Site. These figures have been updated to also illustrate the pass-by trips and are included in the Attachments to this memorandum.

Figures 13 and 14 presented in the TIA illustrate the 2029 Build Conditions peak hour traffic volumes. The traffic volumes include all Project-generated trips entering and exiting the Project Site, including existing trips generated by the previous uses and the pass-by trips. The intersection capacity analyses for the Build Condition are based on the traffic volumes presented in Figure 13 and 14 and include the pass-by trips. Therefore, the intersection capacity analyses for the Build Condition do not need to be revised, as they already include the pass-by trips entering and exiting the Project Site.

Comparison to Previous Zoning Traffic Study

13. The Applicant provides a comparison of the trip generation presented in the GPI's 2020 traffic study with the trip generation for the proposed development. **Nitsch requests the Applicant provide clarification for providing this comparison and how it impacts the analysis.**

<u>Applicant Response:</u> The comparison of the proposed Project-generated trips to the site-generated trips in the 2020 GPI traffic study was included for comparison purposes only. No analyses were conducted based on the comparison to the site-generated trips in the 2020 GPI traffic study.

The 2020 traffic study was conducted to support the rezoning of the Site and the trip generation presented in the study was based on the maximum build-out of the Site and the adjacent Channel 5 property based on the new zoning guidelines. The purpose of including the comparison in the TIA was to simply illustrate that the proposed Project will generate significantly fewer trips than what was estimated in the 2020 traffic study to

Ref: 15306.00 June 29, 2022

Page 6

support the rezoning of the Site. However, the proposed mitigation for the Project along Gould Street mirrors what was proposed by GPI in the 2020 traffic study. The Proponent is committed to providing the full set of proposed improvements along Gould Street plus additional significant bicycle accommodations, even though the Site will generate fewer trips than anticipated when the concept was presented in the 2020 traffic study.

Project Trip Distribution

14. Projected vehicle trips generated to the site were distributed to the study area network based on Journey-to-Work data for the Town of Needham with the 2010 U.S. Census data. **Nitsch finds the Applicant's trip distribution estimation acceptable.**

Applicant Response: No response needed

Transportation Operations Analysis

15. The Applicant examined Existing and projected No-Build and Build traffic conditions for both weekday morning and weekday evening peak hours at the 20 study area intersections. The Applicant also analyzed the interchange of Highland Avenue at I-95 (Ramp) using methodology for merge, diverge, and weaving conflicts. **Nitsch finds the Applicant's methodology to be acceptable.**

Applicant Response: No response needed

Signal Warrant Analysis

16. To determine the feasibility of potential mitigation measures, signal warrant analyses were conducted at two intersections: Central Avenue at Gould Street and Gould Street at the Project Site driveway / Wingate Driveway. Based on the analysis, both intersections meet the three-traffic volume-based warrants (Warrant 1-8-Hour, Warrant 2 4-Hour and Warrant 3 Peak Hour). **Nitsch finds the Applicant's analysis to be acceptable.**

Applicant Response: No response needed

Transportation Mitigation

17. As mitigation measures the Applicant proposes to add on-road bicycle accommodations along Gould Street to create a new north-south bicycle network within this area of Needham and connect Mills Field and the commercial and residential uses on Gould Street with the under-construction bicycle accommodations along Highland Avenue and the existing bicycle lanes in each direction on Hunting Road that include the following:

Ref: 15306.00 June 29, 2022 **Vno.**Memorandum

Page 7

- Bicycle accommodations consisting of on-road bicycle lanes in each direction for approximately 900 feet between Highland Avenue and the former MBTA railroad ROW just north of TV Place.
- > Between the former MBTA railroad ROW and Central Avenue, a distance of approximately ½ mile, the Proponent will fund the installation of shared lane pavement markings and signage in each direction.
- Coordinate with the Town of Needham to fund a study evaluating the feasibility of converting the former railroad ROW into a shared-use path between the Charles River and the commuter rail at Needham Heights.
- A crosswalk at the location of the future shared-use path.

On-road and shared bicycle lanes are intended for commuter, intermediate and experienced cyclists and primarily assist in promoting alternative means of travel for the development. They are not recommended for leisure use and do not provide sufficient accommodations for residents, including children, to access the new rail-trail and Mills Field Playground. Nitsch feels it's pertinent for the Applicant to provide wider sidewalks and separated (buffered) bike lanes for leisure bicyclists from Highland Avenue to Ellis Street (Mills Field Playground) for a safe means of community connectivity for all users, especially for children.

Applicant Response: As presented in the TIA, the Proponent is proposing significant pedestrian and bicycle improvements along Gould Street. Based on feedback received in neighborhood community meetings and from the Town of Needham since the submittal of the TIA, the Proponent is now in the process of revising those preliminary pedestrian and bicycle improvements to provide a higher level of accommodations, including separated bicycle facilities. The currently proposed Gould Street pedestrian and bicycle accommodation improvements are as follows:

- > Sidewalk-level separated bicycle facilities in both directions on Gould Street between Highland Avenue and just north of TV Place
- Shared lane pavement markings and signage in each direction for bicyclists along Gould Street for approximately ½ mile between just north of TV Place and Central Avenue
- > Sidewalk improvements along the west side of Gould Street between Highland Avenue and Noanett Road.
- A new pedestrian facility on the east side of Gould Street along the Site frontage between Highland Avenue and just north of TV Place
- A new crosswalk across Gould Street at the location of the abandoned railroad right-of-way with either an LED Warning sign or a rapid rectangular flashing beacon (RRFB) to alert drivers.

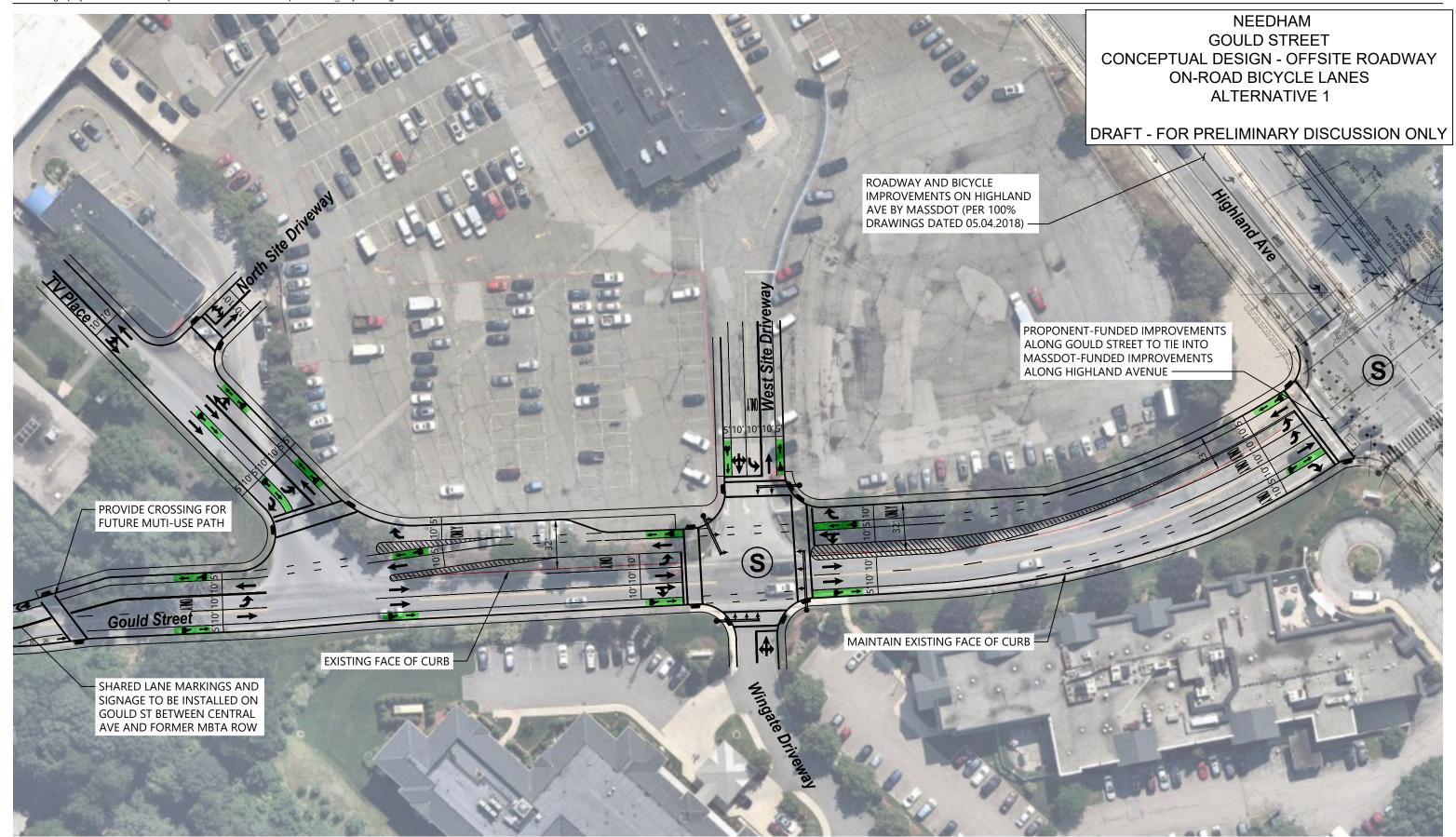
The Gould Street pedestrian and bicycle accommodations will tie into the Highland Avenue accommodations that are currently under construction by MassDOT as well as a potential future shared-use path along the former MBTA railroad right-of-way north of the Site. The Proponent will work with the Town of Needham to support additional funding for a study of the feasibility of converting the former MBTA railroad right-of-way north of the Project Site and the Channel 5 property into a shared use path that would connect with Needham Heights to the south.

As noted above, the Proponent will fund the design and construction of approximately 800 feet of sidewalk-level separated bicycle facilities in both directions on Gould Street between Highland Avenue and just north of TV Place. The Proponent reviewed the feasibility of providing separated bicycle facilities on Gould Street between TV Place and Central Avenue, extending past Mills Field. However, dedicated bicycle facilities cannot

Ref: 15306.00 June 29, 2022

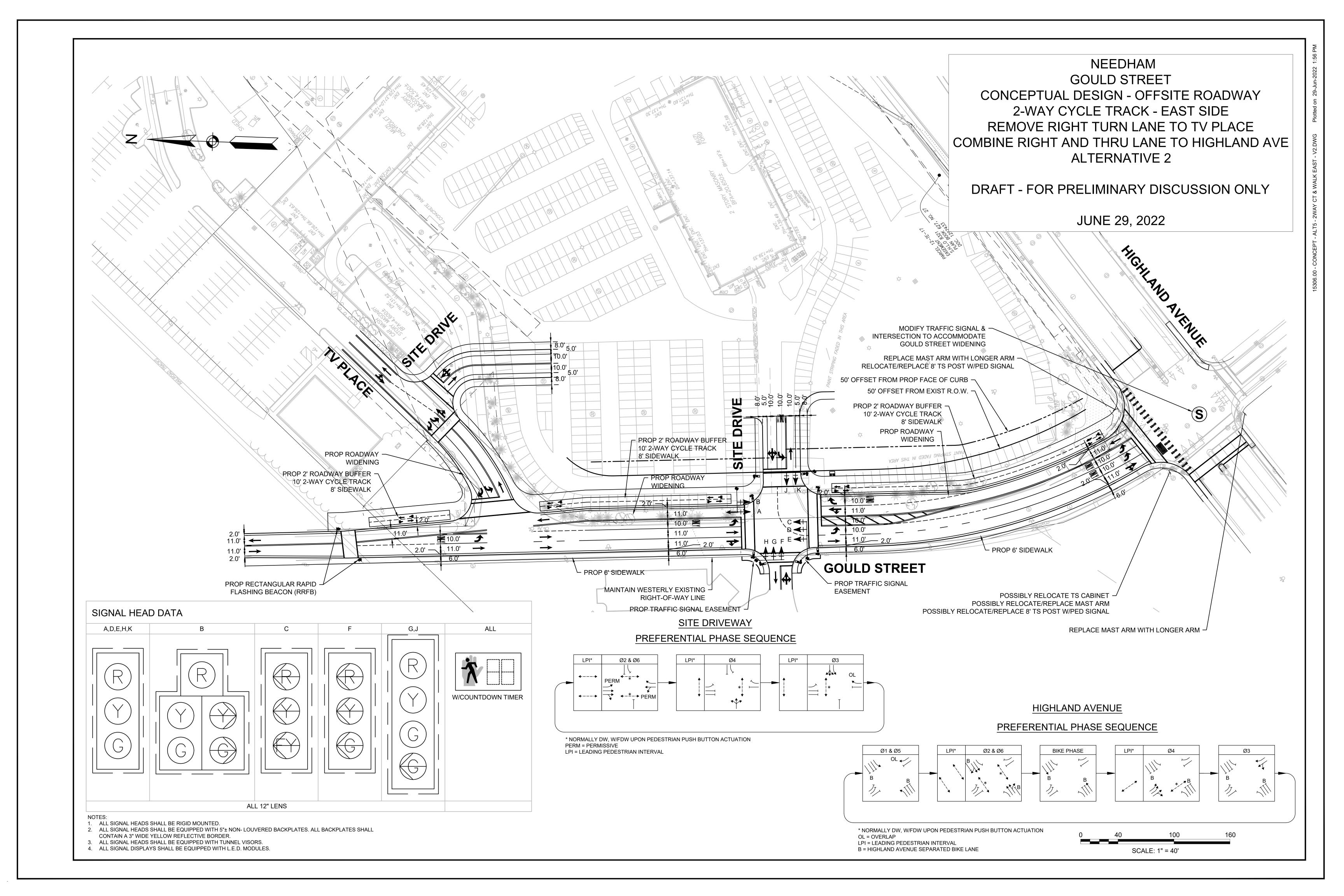
Page 8

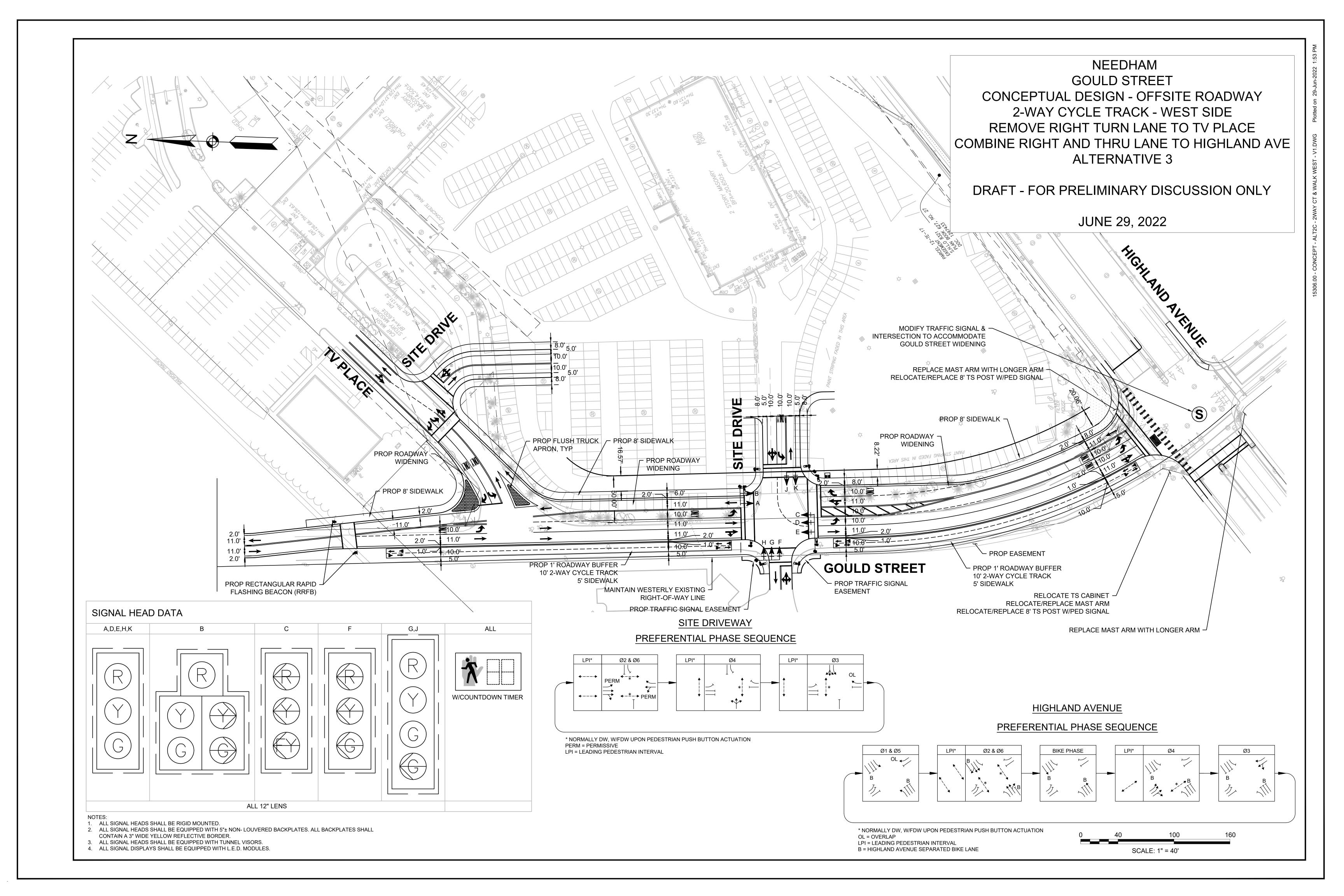
be added within the existing width of the Gould Street cross-section, as the right-of-way is too narrow. Any expansion of the right-of-way north of TV Place would require significant impact to adjacent properties along Gould Street, which the Proponent does not control. Based on coordination with the Town of Needham, the Proponent is proposing the installation of shared lane pavement markings and signage for the segments of Gould Street that are beyond the control of the Proponent.

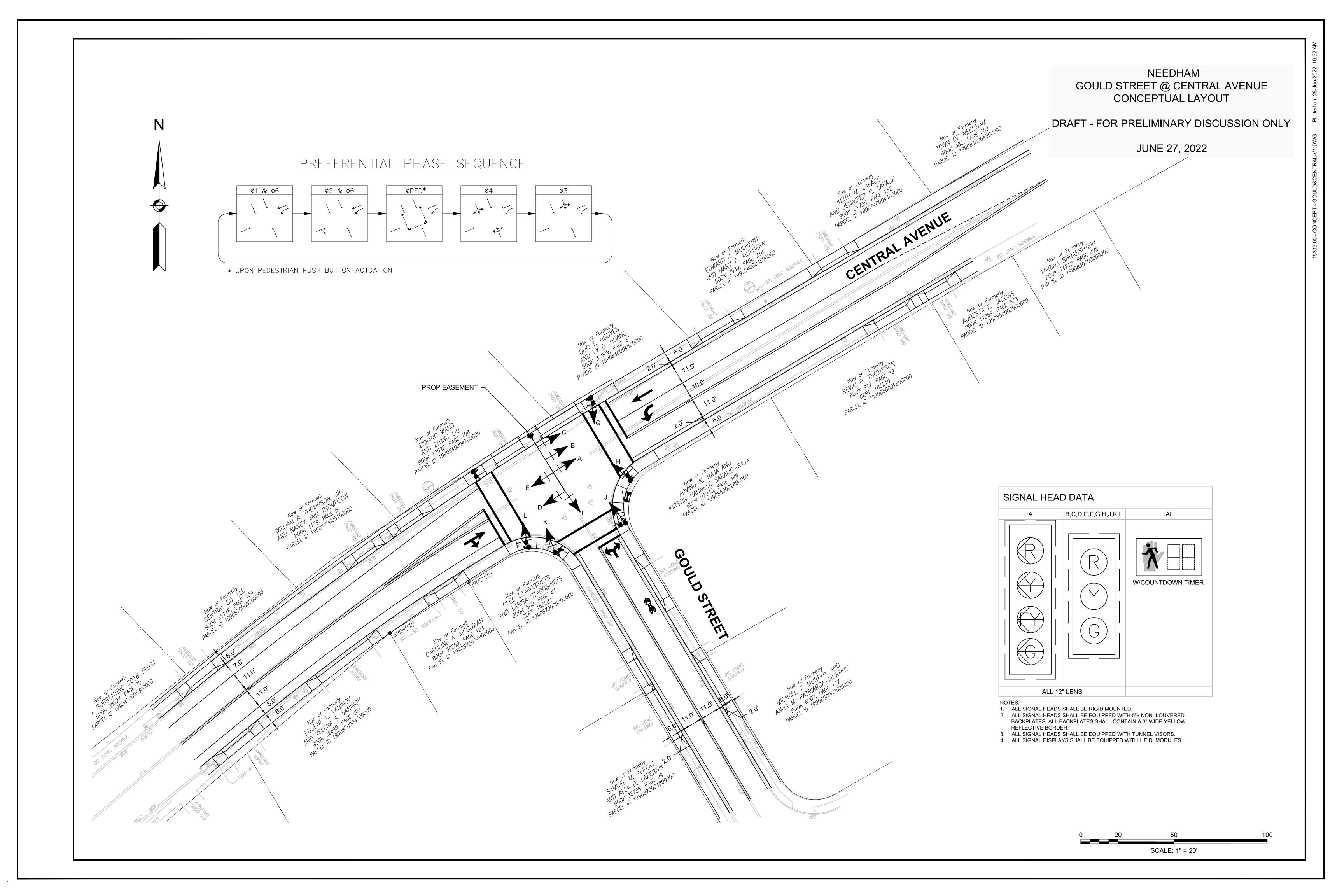

Ref: 15306.00 June 29, 2022 Page 9

Attachments

- > Revised Off-Site Roadway Mitigation
 - Concept Plans
 - Intersection Capacity Analyses
- > Revised Site-Generated Peak Hour Traffic Volume Networks


Revised Off-Site Roadway Mitigation
Concept Plans





Intersection Capacity Analyses

Table A Signalized Intersection Capacity Analysis Summary – Revised Gould Street Concepts

		2029 No	-Build C	Condition		202	29 Build	withou	t Mitiga	tion	2	029 Buil	d with	Mitigati	ion
Location / Movement	v/c a	Del ^b	LOS °	50 Q ^d	95 Q ^e	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q
Highland Avenue at Gould	l Street a	nd Hunt	ing Roa	ıd											
Weekday Morning															
Highland Ave EB L	1.04	>120	F	~93	#234	> 1.20	>120	F	~190	#353	0.96	115.7	F	153	#330
Highland Ave EB T/R	0.86	40.2	 D	364	#512	0.79	36.6	D	364	#512	0.66	30.2	c	363	503
Highland Ave WB L	0.58	58.6	E	36	83	0.61	65.3	E	38	83	0.42	61.4	E	42	83
Highland Ave WB T/R	0.94	52.1	D	362	#545	1.15	117.8	F	~616	#841	0.97	54.3	D	587	#797
Hunting Rd NB L/T	0.96	89.0	F	206	#434	1.13	>120	F	~263	#480	0.96	96.8	F	265	#433
Hunting Rd NB R	0.48	39.8	D	48	102	0.51	44.0	D	52	102	0.53	46.1	D	93	136
Gould St SB L	0.82	64.8	E	145	#281	0.91	84.5	F	182	#347	0.70	71.7	E	136	180
Gould St SB L/T/R	0.78	59.4	E	137	#264	0.88	77.3	E	175	#335	0.57	72.7	E	107	166
Overall	0.98	55.1	E	-	-	1.20	100.2	F	-	-	0.95	55.5	E	•	-
Weekday Evening															
Highland Ave EB L	>1.20	>120	F	19	57	>1.20	>120	F	27	72	0.60	58.2	Ε	24	57
Highland Ave EB T/R	0.81	42.3	D	287	440	0.81	42.4	D	290	442	0.74	32.8	С	252	#373
Highland Ave WB L	0.86	83.3	F	100	194	0.87	84.5	F	101	196	0.78	61.6	Е	89	#182
Highland Ave WB T/R	1.00	61.7	Е	~535	#774	1.07	84.0	F	~599	#861	1.02	61.3	Е	~527	#702
Hunting Rd NB L/T	0.56	51.4	D	66	127	0.58	52.2	D	70	134	0.73	61.0	Е	65	#126
Hunting Rd NB R	0.10	35.7	D	4	24	0.10	35.7	D	4	24	0.07	34.2	С	0	5
Gould St SB L	0.91	61.1	Е	295	#574	>1.20	>120	F	~681	#1051	0.97	61.6	E	310	#376
Gould St SB L/T/R	0.88	56.9	Е	284	#554	>1.20	>120	F	~653	#1022	0.76	45.5	D	228	#239
Overall	1.03	59.5	Е	-	-	>1.20	>120	F	-	-	1.05	52.9	D	-	-
	_			_											
Gould Street at Wingate D	riveway	/ Project	Site Dr	iveway											
Weekday Morning															
Wingate Dwy EB L/T/R											0.01	61.9	E	0	0
Site Dwy WB L											0.50	65.0	Е	46	90
Site Dwy WB L/T/R											0.29	62.1	E	25	68
Gould St NB L/T	Intersec	tion uns	ignalize	d under 2	029 No		ection un				0.57	5.0	Α	153	m273
Gould St NB R	Buila	Condition	ons with	out Mitig	ation	Build	Conditio	ns with	nout Miti	gation	0.31	4.0	Α	22	m78
Gould St SB L											0.08	3.1	Α	3	24
Gould St SB T/R											0.15	3.0	Α	20	88
Overall											0.54	7.8	Α		
Weekday Evening															
Wingate Dwy EB L/T/R											0.03	43.4	D	0	12
Site Dwy WB L											0.75	44.2	D	174	187
Site Dwy WB L/T/R											0.70	41.6	D	163	176
Gould St NB L/T	Intersec	tion uns	ignalize	d under 2	029 No	Interse	ection un	nsignali	zed unde	er 2029	0.31	10.7	В	56	m252
Gould St NB R			_	out Mitig			Conditio				0.07	13.2	В	1	m30
Gould St SB L								0.03	8.8	Α	4	21			
Gould St SB T/R											0.37	11.4	В	124	270
Overall											0.44	21.8	С		

a Volume to capacity ratio.

Note: Elimination of Gould Street northbound right-turn lane onto TV Place does not impact operations as northbound approach is under free-flow conditions.

b Average total delay, in seconds per vehicle.

c Level-of-service.

d 50th percentile queue, in feet.

e 95th percentile queue, in feet.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	₽		ሻ	†
Traffic Vol, veh/h	25	20	635	135	85	355
Future Vol. veh/h	25	20	635	135	85	355
Conflicting Peds, #/hr	0	0	000	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -	None	riee -	None
Storage Length	0	150	-	None -	150	None -
Veh in Median Storage, #	0	150	0	-	150	0
	0					
Grade, %	60	-	0	-	- 04	0
Peak Hour Factor		60	95	95	91	91
Heavy Vehicles, %	0	0	2	2	0	3
Mvmt Flow	42	33	668	142	93	390
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1315	739	0	0	810	0
Stage 1	739	-	-	-	-	-
Stage 2	576	-	-	-	-	-
Critical Hdwy	6.4	6.2	_	-	4.1	_
Critical Hdwy Stg 1	5.4	-	_	_	-	_
Critical Hdwy Stg 2	5.4	-	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	176	421	_	_	825	_
Stage 1	476	721	-	-	-	_
Stage 2	566	-		-		-
Platoon blocked, %	200	-			-	
	450	404	-	-	005	-
Mov Cap-1 Maneuver	156	421	-	-	825	-
Mov Cap-2 Maneuver	156	-	-	-	-	-
Stage 1	476	-	-	-	-	-
Stage 2	502	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	26.5		0		1.9	
HCM LOS	D		0		1.5	
I IOW LOO						
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	WBLn2	SBL
Capacity (veh/h)		-	-	156	421	825
HCM Lane V/C Ratio		-	-	0.267	0.079	0.113
HCM Control Delay (s)		-	-	36.3	14.3	9.9
HCM Lane LOS		-	-	Е	В	Α
HCM 95th %tile Q(veh)		-	-	1	0.3	0.4

11. Gould St & Will	ugate D	wy/iviuz	roid	Dwy									Timing Plan. Weekday Worning
	٠	→	•	•	←	•	4	†	<i>></i>	/	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	4			4	7	7	∱ ∱		
Traffic Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Future Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	12	12	12	13	13	12	12	12	12	12	12	
Storage Length (ft)	0		0	0		0	0		100	150		0	
Storage Lanes	0		0	1		0	0		1	1		0	
Taper Length (ft)	25			25			25			25			
Right Turn on Red			Yes			Yes			Yes			Yes	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		151			225			398			315		
Travel Time (s)		3.4			5.1			9.0			7.2		
Confl. Bikes (#/hr)									1				
Peak Hour Factor	0.63	0.63	0.63	0.90	0.90	0.90	0.90	0.90	0.90	0.83	0.83	0.83	
Shared Lane Traffic (%)				34%									
Lane Group Flow (vph)	0	10	0	51	50	0	0	850	428	36	424	0	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2	. 0		6		
Permitted Phases	•	•					2	_	2	6	•		
Detector Phase	4	4		8	8		2	2	2	6	6		
Switch Phase	•	•		J	J		_		_	•	J		
Minimum Initial (s)	6.0	6.0		6.0	6.0		10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	27.0	27.0		11.0	11.0		15.0	15.0	15.0	23.0	23.0		
Total Split (s)	27.0	27.0		13.0	13.0		95.0	95.0	95.0	95.0	95.0		
Total Split (%)	20.0%	20.0%		9.6%	9.6%		70.4%	70.4%	70.4%	70.4%	70.4%		
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	1.0	0.0		0.0	0.0		1.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lead/Lag		7.0		7.0	7.0			7.0	7.0	7.0	7.0		
Lead-Lag Optimize?													
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	C-Min	C-Min		
v/c Ratio	INOHE	0.07		0.43	0.36		O-IVIIII	0.55	0.32	0.08	0.14		
Control Delay		0.07		70.6	44.5			7.1	3.2	5.8	4.0		
Queue Delay		0.0		0.0	0.0			4.5	1.2	0.0	0.0		
Total Delay		0.0		70.6	44.5			11.6	4.5	5.8	4.0		
Queue Length 50th (ft)		0.6		46	44.5 25			153	22	3.0	20		
Queue Length 95th (ft)		0		90	68			m273	m78	24	88		
Internal Link Dist (ft)		71		90	145			318	11170	24	235		
Turn Bay Length (ft)		7 1			140			310	100	150	233		
Base Capacity (vph)		313		128	147			1550	1339	447	2978		
		313		128	147			611	669	447	2978		
Starvation Cap Reductn		0		-							-		
Spillback Cap Reductn		0		0	0			0	0	0	0		
Storage Cap Reductn				0 40	~				0 64	0	-		
Reduced v/c Ratio		0.03		0.40	0.34			0.91	0.64	0.08	0.14		
latered attack Occurrence													

Intersection Summary

Area Type:

Cycle Length: 135 Actuated Cycle Length: 135

Offset: 15 (11%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 80

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

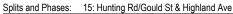
11. Gould St & Williag	gate Dv	vy/iviuz	roid	Dwy									riming Plan. Weekday Morning
	۶	→	•	•	+	•	4	†	/	/	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		ř	4			ર્ન	7	ř	↑ ↑		
Traffic Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Future Volume (vph)	1	0	5	70	1	20	15	750	385	30	350	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	12	12	13	13	12	12	12	12	12	12	
Total Lost time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lane Util. Factor		1.00		0.95	0.95			1.00	1.00	1.00	0.95		
Frpb, ped/bikes		1.00		1.00	1.00			1.00	0.98	1.00	1.00		
Flpb, ped/bikes		1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Frt		0.89		1.00	0.93			1.00	0.85	1.00	1.00		
Flt Protected		0.99		0.95	0.97			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		1645		1681	1663			1861	1551	1770	3537		
Flt Permitted		0.99		0.95	0.97			0.99	1.00	0.29	1.00		
Satd. Flow (perm)		1645		1681	1663			1841	1551	531	3537		
Peak-hour factor, PHF	0.63	0.63	0.63	0.90	0.90	0.90	0.90	0.90	0.90	0.83	0.83	0.83	
Adj. Flow (vph)	2	0.00	8	78	1	22	17	833	428	36	422	2	
RTOR Reduction (vph)	0	10	0	0	21	0	0	0	40	0	0	0	
Lane Group Flow (vph)	0	0	0	51	29	0	0	850	388	36	424	0	
Confl. Bikes (#/hr)	U	U	U	JI	23	U	U	030	1	30	424	U	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	3piit 4	4		Split 8	8		Fellii	2	Fellil	Fellii	6		
Permitted Phases	4	4		0	0		2		2	6	U		
Actuated Green, G (s)		5.8		8.3	8.3		2	108.9	108.9	108.9	108.9		
Effective Green, g (s)		5.8		8.3	8.3			108.9	108.9	108.9	108.9		
Actuated g/C Ratio		0.04		0.06	0.06			0.81	0.81	0.81	0.81		
Clearance Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
()		3.0		3.0	3.0			3.0	3.0	3.0	3.0		
Vehicle Extension (s)													
Lane Grp Cap (vph)		70		103	102			1485	1251	428	2853		
v/s Ratio Prot		c0.00		c0.03	0.02			0.40	0.05	0.07	0.12		
v/s Ratio Perm		0.04		0.50	2.00			c0.46	0.25	0.07	0.45		
v/c Ratio		0.01		0.50	0.29			0.57	0.31	0.08	0.15		
Uniform Delay, d1		61.8		61.3	60.5			4.7	3.4	2.7	2.9		
Progression Factor		1.00		1.00	1.00			0.98	1.14	1.00	1.00		
Incremental Delay, d2		0.0		3.7	1.6			0.4	0.2	0.4	0.1		
Delay (s)		61.9		65.0	62.1			5.0	4.0	3.1	3.0		
Level of Service		Е		Е	Е			Α	Α	Α	Α		
Approach Delay (s)		61.9			63.6			4.7			3.0		
Approach LOS		Е			Е			Α			Α		
Intersection Summary													
HCM 2000 Control Delay			7.8	Н	CM 2000	Level of S	ervice		Α				
HCM 2000 Volume to Capacity	ratio		0.54										
Actuated Cycle Length (s)			135.0	S	um of lost	time (s)			12.0				
Intersection Capacity Utilization	n		67.0%	IC	U Level o	f Service			С				
Analysis Period (min)			15										
0 111 11 0													

	٠	→	•	•	←	•	1	†	<i>></i>	/	ļ	4			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	Ø10	Ø11
Lane Configurations	ሻ	↑ ↑		ሻ	∱ ∱			ર્ન	7	1,4	f)				
Traffic Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45			
Future Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	175		0	165		400	0		150	200		200			
Storage Lanes	1		0	1		0	0		1	1		0			
Taper Length (ft)	25			25			25			25					
Right Turn on Red			Yes			Yes			Yes			Yes			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		345			745			3028			398				
Travel Time (s)		7.8			16.9			68.8			9.0				
Confl. Peds. (#/hr)	1		1	1		1									
Confl. Bikes (#/hr)									1						
Peak Hour Factor	0.87	0.87	0.87	0.92	0.92	0.92	0.88	0.88	0.88	0.94	0.94	0.94			
Heavy Vehicles (%)	3%	2%	0%	0%	5%	1%	0%	1%	0%	3%	2%	0%			
Shared Lane Traffic (%)															
Lane Group Flow (vph)	172	1040	0	49	1484	0	0	301	273	309	144	0			
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA				
Protected Phases	1	6		5	2		3	3	5	4	4		9	10	11
Permitted Phases									3						
Detector Phase	1	6		5	2		3	3	5	4	4				
Switch Phase															
Minimum Initial (s)	6.0	10.0		6.0	10.0		6.0	6.0	6.0	6.0	6.0		1.0	1.0	1.0
Minimum Split (s)	12.0	20.0		12.0	25.0		12.0	12.0	12.0	29.5	29.5		3.0	3.0	3.0
Total Split (s)	16.0	50.5		24.0	58.5		28.5	28.5	24.0	26.0	26.0		3.0	3.0	3.0
Total Split (%)	11.9%	37.4%		17.8%	43.3%		21.1%	21.1%	17.8%	19.3%	19.3%		2%	2%	2%
Yellow Time (s)	3.0	4.0		3.0	4.0		3.5	3.5	3.0	3.5	3.5		2.0	2.0	2.0
All-Red Time (s)	3.0	1.0		3.0	1.0		2.5	2.5	3.0	2.5	2.5		0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0				
Lead/Lag	Lead			Lead			Lead	Lead	Lead				Lag	Lag	Lag
Lead-Lag Optimize?															
Recall Mode	None	Min		None	Min		Min	Min	None	C-Min	C-Min		None	None	None
v/c Ratio	0.96	0.66		0.42	1.00			0.96	0.61	0.66	0.56				
Control Delay	117.3	33.3		70.2	56.2			98.4	22.8	68.6	63.4				
Queue Delay	15.8	0.0		0.0	2.4			0.0	0.0	0.0	0.0				
Total Delay	133.2	33.3		70.2	58.6			98.4	22.8	68.6	63.4				
Queue Length 50th (ft)	153	363		42	587			265	93	136	107				
Queue Length 95th (ft)	#330	503		83	#797			#433	136	180	166				
Internal Link Dist (ft)	4	265		405	665			2948	4=-	000	318				
Turn Bay Length (ft)	175	4==:		165	4.476			0.4.5	150	200	205				
Base Capacity (vph)	179	1574		240	1479			312	548	509	280				
Starvation Cap Reductn	0	0		0	0			0	0	0	0				
Spillback Cap Reductn	11	0		0	13			0	0	0	0				
Storage Cap Reductn	0	0		0	0			0	0	0	0				
Reduced v/c Ratio	1.02	0.66		0.20	1.01			0.96	0.50	0.61	0.51				

Intersection Summary

Area Type: Other

Cycle Length: 135


Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 4:SBTL, Start of Green


Natural Cycle: 145

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	←	•	1	†	<i>></i>	-	↓	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	Ť	↑ 1≽		¥	∱ }			ર્ન	7	44	ĵ»		
Traffic Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45	
Future Volume (vph)	150	890	15	45	605	760	25	240	240	290	90	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	0.97	1.00		
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00	0.99	1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00		
Frt	1.00	1.00		1.00	0.92			1.00	0.85	1.00	0.95		
Flt Protected	0.95	1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1752	3530		1805	3178			1874	1600	3400	1781		
Flt Permitted	0.95	1.00		0.95	1.00			1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1752	3530		1805	3178			1874	1600	3400	1781		
Peak-hour factor, PHF	0.87	0.87	0.87	0.92	0.92	0.92	0.88	0.88	0.88	0.94	0.94	0.94	
Adj. Flow (vph)	172	1023	17	49	658	826	28	273	273	309	96	48	
RTOR Reduction (vph)	0	1	0	0	159	0	0	0	74	0	14	0	
Lane Group Flow (vph)	172	1039	0	49	1325	0	0	301	199	309	130	0	
Confl. Peds. (#/hr)	1		1	1		1							
Confl. Bikes (#/hr)									1				
Heavy Vehicles (%)	3%	2%	0%	0%	5%	1%	0%	1%	0%	3%	2%	0%	
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA		
Protected Phases	1	6		5	2		3	3	5	4	4		
Permitted Phases									3				
Actuated Green, G (s)	13.8	60.2		8.9	58.2			22.5	31.4	17.5	17.5		
Effective Green, g (s)	13.8	60.2		8.9	58.2			22.5	31.4	17.5	17.5		
Actuated g/C Ratio	0.10	0.45		0.07	0.43			0.17	0.23	0.13	0.13		
Clearance Time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0		
Vehicle Extension (s)	2.0	2.0		2.0	2.0			2.0	2.0	2.0	2.0		
Lane Grp Cap (vph)	179	1574		118	1370			312	372	440	230		
v/s Ratio Prot	c0.10	0.29		0.03	c0.42			c0.16	0.04	c0.09	0.07		
v/s Ratio Perm									0.09				
v/c Ratio	0.96	0.66		0.42	0.97			0.96	0.53	0.70	0.57		
Uniform Delay, d1	60.3	29.4		60.6	37.5			55.9	45.4	56.3	55.2		
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.12	1.14		
Incremental Delay, d2	55.3	0.8		0.9	16.8			40.9	0.7	9.0	9.6		
Delay (s)	115.7	30.2		61.4	54.3			96.8	46.1	71.7	72.7		
Level of Service	F	С		Е	D			F	D	Е	Е		
Approach Delay (s)		42.3			54.5			72.7			72.1		
Approach LOS		D			D			Е			Е		
Intersection Summary													
HCM 2000 Control Delay			55.5	H	CM 2000	Level of S	ervice		Е				
HCM 2000 Volume to Capacit	y ratio		0.95										
Actuated Cycle Length (s)	,		135.0	Sı	um of lost	time (s)			27.0				
Intersection Capacity Utilizatio	n		91.0%		U Level c	. ,			E				
Analysis Period (min)			15										
c Critical Lane Group													

							_
Intersection							
Int Delay, s/veh	6.6						1
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Ī
	WBL			INDK			
Lane Configurations		70	}	20	<u>*</u>	↑	
Traffic Vol, veh/h	105	70 70	305 305	20	15	615 615	
Future Vol, veh/h	105			0	15		
Conflicting Peds, #/hr	O Cton	O Ctor	0 Free	-	0 Free	0	
Sign Control	Stop	Stop		Free		Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	150	-	-	150	-	
Veh in Median Storage, #	0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	81	81	75	75	73	73	
Heavy Vehicles, %	0	0	0	0	0	6	
Mvmt Flow	130	86	407	27	21	842	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1305	421	0	0	434	0	
Stage 1	421	-	-	-	-	-	
Stage 2	884	_	-		-	_	
Critical Hdwy	6.4	6.2	_	-	4.1	_	
Critical Hdwy Stg 1	5.4	-	-		-	_	
Critical Hdwy Stg 2	5.4	-	-	-	-		
Follow-up Hdwy	3.5	3.3	_	_	2.2	_	
Pot Cap-1 Maneuver	178	637	_	_	1136	_	
Stage 1	667	- 001	-	-	1130	-	
Stage 2	407	-	-	-	-		
Platoon blocked, %	407		-	-		-	
Mov Cap-1 Maneuver	175	637	_		1136		
	175						
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	667	-	-	-	-	-	
Stage 2	400	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	45.7		0		0.2		
HCM LOS	E						
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	WBLn2	SBL	
Capacity (veh/h)		-	-	175	637	1136	
HCM Lane V/C Ratio		-	-	0.741	0.136	0.018	
HCM Control Delay (s)			-	68.5	11.5	8.2	
HCM Lane LOS		-	-	00.5 F	11.5 B	6.2 A	
HCM 95th %tile Q(veh)		-	-	4.7	0.5	0.1	
HOW SOUL WILLE CALLED		-	-	4.7	0.3	0.1	

	•	-	•	•	←	•	4	†	~	-	ļ	4	
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4		- 1	4			ર્ન	7	*	† 1>		
raffic Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
uture Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
ane Width (ft)	12	12	12	12	1300	1300	12	12	12	12	1300	12	
	0	12	0	0	13	0	0	12	100	150	12	0	
Storage Length (ft)			-			-	0					-	
torage Lanes	0		0	1		0	-		1	1		0	
aper Length (ft)	25			25			25			25			
Right Turn on Red			Yes			Yes			Yes			Yes	
ink Speed (mph)		30			30			30			30		
ink Distance (ft)		151			225			398			315		
ravel Time (s)		3.4			5.1			9.0			7.2		
Peak Hour Factor	0.75	0.75	0.75	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	
Shared Lane Traffic (%)				44%									
ane Group Flow (vph)	0	41	0	280	277	0	0	337	93	16	766	0	
urn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2			6		
Permitted Phases	<u> </u>						2		2	6			
Detector Phase	4	4		8	8		2	2	2	6	6		
Switch Phase				U	U					U	U		
Minimum Initial (s)	6.0	6.0		6.0	6.0		10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	27.0	27.0		11.0	11.0		15.0	15.0	15.0	23.0	23.0		
otal Split (s)	27.0	27.0		33.0	33.0		40.0	40.0	40.0	40.0	40.0		
otal Split (%)	27.0%	27.0%		33.0%	33.0%		40.0%	40.0%	40.0%	40.0%	40.0%		
'ellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0		
ost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0	0.0	0.0		
Total Lost Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
_ead/Lag													
_ead-Lag Optimize?													
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	C-Min	C-Min		
//c Ratio		0.20		0.75	0.71			0.30	0.09	0.03	0.36		
Control Delay		8.5		48.3	43.8			14.0	8.2	15.4	13.9		
Queue Delay		0.0		0.0	0.0			0.6	0.0	0.0	0.1		
Total Delay		8.5		48.3	43.8			14.6	8.2	15.4	14.0		
Queue Length 50th (ft)		0.5		174	163			56	1	4	124		
• • • • • • • • • • • • • • • • • • • •		12		187	176			m252	m30	21	270		
Queue Length 95th (ft)				107					11130	21			
nternal Link Dist (ft)		71			145			318	400	450	235		
Turn Bay Length (ft)									100	150			
Base Capacity (vph)		413		487	503			1112	986	568	2134		
Starvation Cap Reductn		0		0	0			437	0	0	0		
Spillback Cap Reductn		4		0	0			0	0	0	276		
Storage Cap Reductn		0		0	0			0	0	0	0		
Reduced v/c Ratio		0.10		0.57	0.55			0.50	0.09	0.03	0.41		
ntersection Summary													
rea Type:	Other												
Cycle Length: 100	Other												
	0												
Actuated Cycle Length: 10		TL 1 C C	DTI O	(0									
Offset: 0 (0%), Referenced	to pnase 2:NB	IL and 6:S	BIL, Star	of Green									
Natural Cycle: 65													
Control Type: Actuated-Co													
n Volume for 95th perce	ntile queue is m	netered by	upstream	signal.									
				_									
	Gould St & Wind	igate Dwy/	Muzi Ford	Dwy									
-						•					4-		

	۶	→	•	•	+	•	1	†	<i>></i>	/		4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		*	4			ર્ન	7	*	↑ ↑		
Traffic Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
Future Volume (vph)	1	0	30	360	1	40	5	285	80	15	700	5	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	12	12	13	13	12	12	12	12	12	12	
Total Lost time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Lane Util. Factor		1.00		0.95	0.95			1.00	1.00	1.00	0.95		
Frt		0.87		1.00	0.97			1.00	0.85	1.00	1.00		
Flt Protected		1.00		0.95	0.96			1.00	1.00	0.95	1.00		
Satd. Flow (prot)		1615		1681	1705			1861	1583	1770	3536		
Flt Permitted		1.00		0.95	0.96			0.99	1.00	0.51	1.00		
Satd. Flow (perm)		1615		1681	1705			1842	1583	941	3536		
Peak-hour factor, PHF	0.75	0.75	0.75	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	
Adj. Flow (vph)	1	0	40	500	1	56	6	331	93	16	761	5	
RTOR Reduction (vph)	0	38	0	0	10	0	0	0	32	0	0	0	
Lane Group Flow (vph)	0	3	0	280	267	0	0	337	61	16	766	0	
Turn Type	Split	NA		Split	NA		Perm	NA	Perm	Perm	NA		
Protected Phases	4	4		8	8			2			6		
Permitted Phases				•	_		2		2	6	-		
Actuated Green, G (s)		7.0		22.3	22.3			58.7	58.7	58.7	58.7		
Effective Green, q (s)		7.0		22.3	22.3			58.7	58.7	58.7	58.7		
Actuated g/C Ratio		0.07		0.22	0.22			0.59	0.59	0.59	0.59		
Clearance Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0		
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)		113		374	380			1081	929	552	2075		
v/s Ratio Prot		c0.00		c0.17	0.16						c0.22		
v/s Ratio Perm								0.18	0.04	0.02			
v/c Ratio		0.03		0.75	0.70			0.31	0.07	0.03	0.37		
Uniform Delay, d1		43.3		36.2	35.8			10.4	8.9	8.7	10.9		
Progression Factor		1.00		1.00	1.00			0.99	1.48	1.00	1.00		
Incremental Delay, d2		0.1		8.0	5.8			0.4	0.1	0.1	0.5		
Delay (s)		43.4		44.2	41.6			10.7	13.2	8.8	11.4		
Level of Service		D		D	D			В	В	Α	В		
Approach Delay (s)		43.4			42.9			11.2			11.3		
Approach LOS		D			D			В			В		
Intersection Summary													
HCM 2000 Control Delay			21.8	H	CM 2000 L	evel of Se	rvice		С				
HCM 2000 Volume to Capacity rat	io		0.44										
Actuated Cycle Length (s)			100.0	Sı	ım of lost t	ime (s)			12.0				
Intersection Capacity Utilization			44.1%	IC	U Level of	Service			Α				
Analysis Period (min)			15										
c Critical Lane Group													

	٠	-	\rightarrow	•	←	•	•	†	<i>></i>	/	↓	4				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø9	Ø10	Ø11	
Lane Configurations	*	↑ ↑		7	↑ ↑			ર્ન	7	14.54	₽.					
Traffic Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135				
Future Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	175		0	165		400	0		150	200		200				
Storage Lanes	1		0	1		0	0		1	1		0				
Taper Length (ft)	25			25			25			25						
Right Turn on Red			Yes			Yes			Yes			Yes				
Link Speed (mph)		30			30			30			30					
Link Distance (ft)		345			745			3028			398					
Travel Time (s)		7.8			16.9			68.8			9.0					
Confl. Bikes (#/hr)						1										
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.83	0.83	0.83				
Shared Lane Traffic (%)																
Lane Group Flow (vph)	38	819	0	142	1352	0	0	102	108	922	392	0				
Turn Type	Prot	NA		Prot	NA		Split	NA	pt+ov	Split	NA					
Protected Phases	1	6		5	2		3	3	3 5	4	4		9	10	11	
Permitted Phases																
Detector Phase	1	6		5	2		3	3	3 5	4	4					
Switch Phase																
Minimum Initial (s)	6.0	10.0		6.0	10.0		6.0	6.0		6.0	6.0		1.0	1.0	1.0	
Minimum Split (s)	12.0	20.0		12.0	25.0		12.0	12.0		21.0	21.0		3.0	3.0	3.0	
Total Split (s)	12.0	31.0		17.0	36.0		14.0	14.0		32.0	32.0		3.0	3.0	3.0	
Total Split (%)	12.0%	31.0%		17.0%	36.0%		14.0%	14.0%		32.0%	32.0%		3%	3%	3%	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.5	3.5		3.5	3.5		2.0	2.0	2.0	
All-Red Time (s)	3.0	1.0		3.0	1.0		2.5	2.5		2.5	2.5		0.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0					
Total Lost Time (s)	6.0	5.0		6.0	5.0			6.0		6.0	6.0					
Lead/Lag	Lead			Lead			Lead	Lead					Lag	Lag	Lag	
Lead-Lag Optimize?																
Recall Mode	None	Min		None	Min		Min	Min		C-Min	C-Min		None	None	None	
v/c Ratio	0.36	0.80		0.78	1.02			0.73	0.26	0.93	0.74					
Control Delay	55.0	40.1		71.9	62.3			74.0	2.7	54.5	41.2					
Queue Delay	0.0	0.0		0.0	0.2			5.4	0.0	5.1	1.1					
Total Delay	55.0	40.1		71.9	62.5			79.4	2.7	59.6	42.3					
Queue Length 50th (ft)	24	252		89	~527			65	0	310	228					
Queue Length 95th (ft)	57	#373		#182	#702			#126	5	#376	#239					
Internal Link Dist (ft)	47-	265		405	665			2948	450	000	318					
Turn Bay Length (ft)	175	4007		165	400.4			445	150	200	507					
Base Capacity (vph)	106	1027		194	1324			147	424	987	527					
Starvation Cap Reductn	0	0		0	0			0	0	43	32					
Spillback Cap Reductn	0	0		0	1			17	0	0	0					
Storage Cap Reductn	0	0		0	0			0	0	0	0					
Reduced v/c Ratio	0.36	0.80		0.73	1.02			0.78	0.25	0.98	0.79					

Intersection Summary

Other

Area Type: Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 4:SBTL, Start of Green

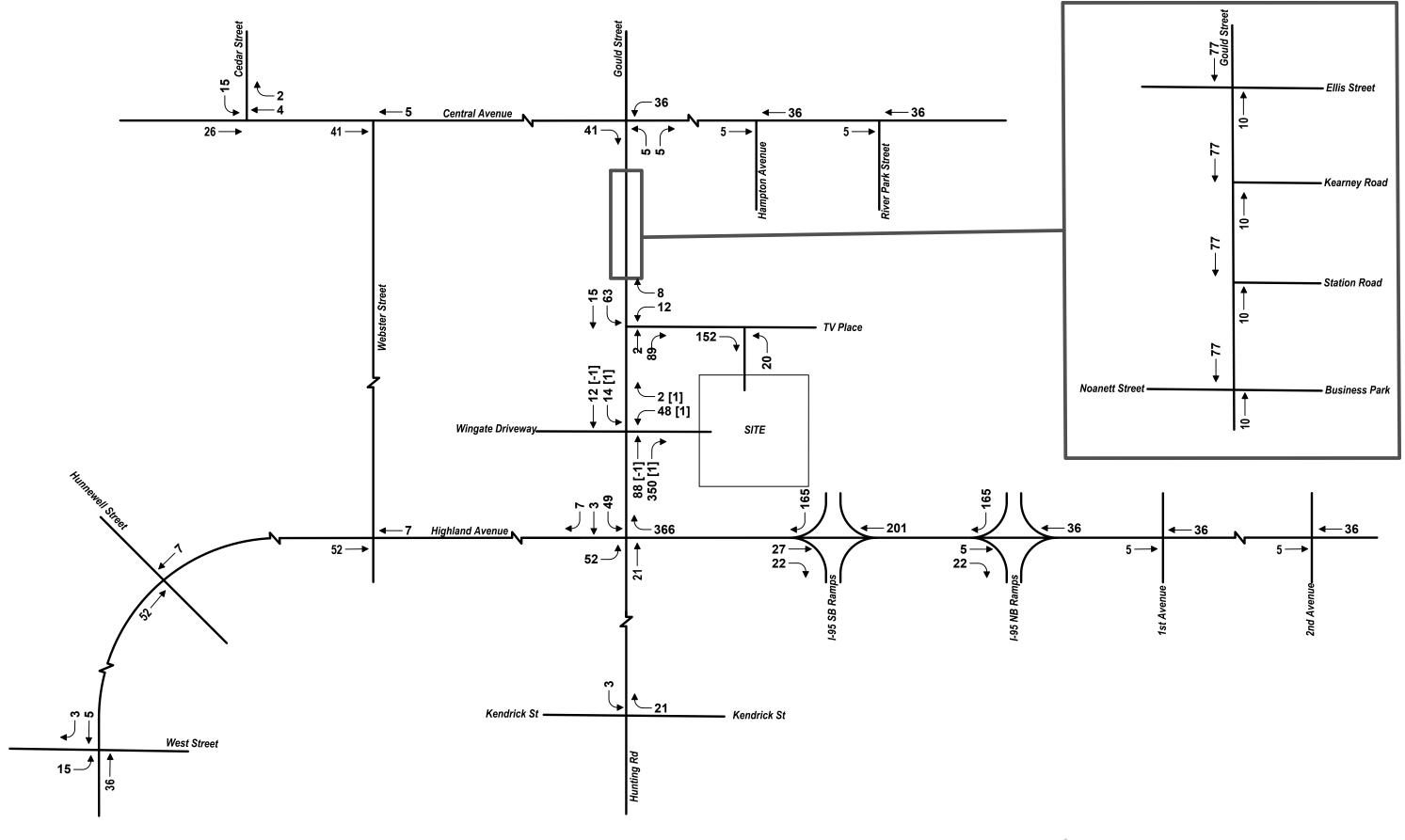
Natural Cycle: 110

Control Type: Actuated-Coordinated

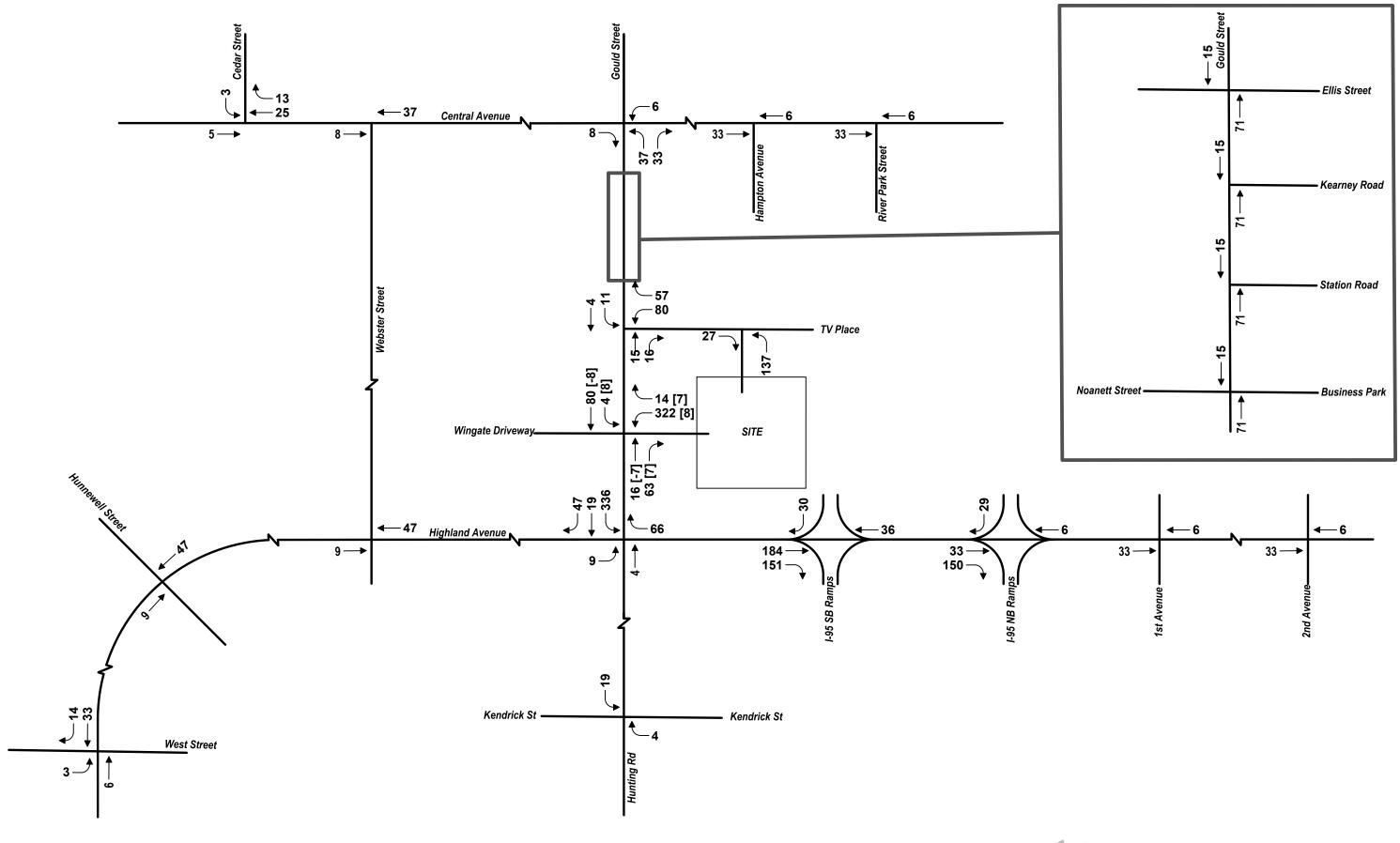
Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

Splits and Phases: 15: Hunting Rd/Gould St & Highland Ave


	۶	→	•	•	—	4	1	†	/	/		4		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	*	↑ ↑		*	↑ ↑			4	7	14.14	ĵ.			
Traffic Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135		
Future Volume (vph)	35	725	20	135	1015	270	20	65	90	765	190	135		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	5.0		6.0	5.0			6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	0.97	1.00			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00			
Frt	1.00	1.00		1.00	0.97			1.00	0.85	1.00	0.94			
Flt Protected	0.95	1.00		0.95	1.00			0.99	1.00	0.95	1.00			
Satd. Flow (prot)	1770	3525		1770	3413			1841	1583	3433	1747			
Flt Permitted	0.95	1.00		0.95	1.00			0.99	1.00	0.95	1.00			
Satd. Flow (perm)	1770	3525		1770	3413			1841	1583	3433	1747			
Peak-hour factor, PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.83	0.83	0.83	0.83	0.83	0.83		
Adj. Flow (vph)	38	797	22	142	1068	284	24	78	108	922	229	163		
RTOR Reduction (vph)	0	2	0	0	22	0	0	0	89	0	25	0		
Lane Group Flow (vph)	38	817	0	142	1330	0	0	102	19	922	367	0		
Confl. Bikes (#/hr)						1								
Turn Type	Prot	NA		Prot	NA		Split	NA	pt+ov	Split	NA			
Protected Phases	1	6		5	2		3	3	3 5	4	4			
Permitted Phases														
Actuated Green, G (s)	3.6	31.5		10.3	38.2			7.6	17.9	27.6	27.6			
Effective Green, g (s)	3.6	31.5		10.3	38.2			7.6	17.9	27.6	27.6			
Actuated g/C Ratio	0.04	0.32		0.10	0.38			0.08	0.18	0.28	0.28			
Clearance Time (s)	6.0	5.0		6.0	5.0			6.0		6.0	6.0			
Vehicle Extension (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0			
Lane Grp Cap (vph)	63	1110		182	1303			139	283	947	482			
v/s Ratio Prot	0.02	0.23		c0.08	c0.39			c0.06	0.01	c0.27	0.21			
v/s Ratio Perm														
v/c Ratio	0.60	0.74		0.78	1.02			0.73	0.07	0.97	0.76			
Uniform Delay, d1	47.5	30.5		43.7	30.9			45.2	34.1	35.8	33.2			
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.09	1.07			
Incremental Delay, d2	10.7	2.2		17.8	30.4			15.8	0.0	22.4	10.0			
Delay (s)	58.2	32.8		61.6	61.3			61.0	34.2	61.6	45.5			
Level of Service	Е	С		E	Е			Е	С	Е	D			
Approach Delay (s)		33.9			61.3			47.2			56.8			
Approach LOS		С			Е			D			Е			
Intersection Summary														
HCM 2000 Control Delay		52.9	Н	CM 2000 L	evel of Se	rvice		D						
HCM 2000 Volume to Capacity ratio		1.05												
Actuated Cycle Length (s)		100.0		um of lost t	. ,			27.0						
Intersection Capacity Utilization		84.3%	IC	CU Level of	Service			Е						
Analysis Period (min)			15											
c Critical Lane Group														

Highland Science Center Needham, Massachusetts

Highland Science Center Needham, Massachusetts

EXHIBIT E

ACENTECH PRELIMINARY NOISE EVALUATION (557 HIGHLAND AVENUE)

[see attached]

June 28, 2022

Mr. Robert Schlager, CPM Bulfinch Companies 116 Huntington Avenue, Suite 600 Boston, MA 02116

Via email: RAS@Bulfinch.com

Subject Preliminary Exterior/Community Noise Evaluation/Narrative – Revision 1

557 Highland Avenue (former Muzi Ford Site), Office & Lab Conversion

Needham, MA

Acentech Project J635632.00

Dear Robert:

This letter provides a preliminary discussion of the community (exterior) noise emissions at 557 Highland Avenue, the proposed research and development office at the former Muzi Ford dealership site in Needham, Massachusetts. We understand this project consists of two buildings and a parking garage. The South Building will be 3-stories with 215,000 square feet of office and lab space. The North Building will have 5-stories with 255,000 square feet of office and lab space. There will be a connecting glass atrium of 2-stories between the two buildings. Sound from the proposed campus described above will have to comply applicable noise limits from the Town of Needham and the Commonwealth of Massachusetts as discussed below.

SOUND LIMITS

TOWN OF NEEDHAM

It is our understanding that the Town of Needham does not have numerical noise limits that are part of the town bylaws. We have identified Section 3.8, Noise Regulation of the Town's General bylaws dated July 2021. Section 3.8.1 simply states:

Except in an emergency, construction activity conducted pursuant to a building permit, which causes noise that extends beyond the property line, shall be limited to the hours of 7AM to 8PM unless authorized by rules or regulations adopted by the Select Board. The penalty for violation of this regulation shall be a \$50 fine.

COMMONWEALTH OF MASSACHUSETTS

The Commonwealth of Massachusetts has enacted regulations for the control of air pollution (310 CMR 7.10¹). To enforce these regulations, the Massachusetts Department of Environmental Protection (MassDEP) has issued guidelines that limit noise levels at property lines and the nearest residence. These limitations are: (a) not to increase the residual overall A-weighted background sound level by more than 10 dB and (b) not to produce a pure tone condition; where the sound pressure level (SPL) in one octave band exceeds the levels in the two adjacent octave bands by 3 dB or more.

¹ 310 Massachusetts Regulation 7.10, U Noise: https://casetext.com/regulation/code-of-massachusetts-regulations/department-310-cmr-department-of-environmental-protection/title-310-cmr-700-air-pollution-control/section-710-u-noise

BACKGROUND SOUND SURVEY

In order to determine compliance with the MassDEP noise limits, a background sound survey was performed from March 2 to 7, 2022. Acentech deployed two sound levels meters at the locations (A and B) shown in Figure 1. We monitored sound continuously for a period over 6 days. During this period, we measured the A-weighted ninetieth percentile sound pressure level (L_{90}) on an hourly basis 24 hours per day along with other metrics that can be reported as needed.

INSTRUMENTATION

We used Type 1 sound level meters (SLMs) in accordance with IEC 61672-1. The SLMs were factory-calibrated to National Institute of Standards and Technology (NIST) traceable sources within the previous 12 months; the laboratory calibration certificates are available upon request. Each SLM was also field-calibrated before and after the start of the survey. Each SLM was set to slow response, and recorded L_{90} sound pressure levels in one hour increments in octave-bands with center frequencies between 31.5 and 8,000 Hz. The equivalent continuous (L_{EQ}) A-weighted sound level (dBA), and unweighted (dBZ) octave-band SPLs were also recorded and will be used as necessary.

RESULTS

Figure 2 is a graph of the A-weighted L_{90} sound levels for the 6-day period. For unknown reasons, the data collection at Location A (Gould Street) abruptly stopped after 19-hours of monitoring. Given the limited amount of data, we are recommending a retest of Location A only. We have compiled the L_{90} sound level and determined the lowest L_{90} sound level for the daytime (7:00 am to 10:00 pm), and nighttime (10:00 pm to 7:00 am) as given in Table 1.

TABLE 1: Summary of L₉₀ Sound Levels and MassDEP Limits

PERIOD	Day (7:00 am-10:00 pm)	Night (10:00 pm-7:00 am)
Location A (Gould Street)	51	40
Location B (I-95 Ramps)	49	42
MassDEP Limit (min + 10 dB)	59*	50*

^{*} These limits are preliminary subject to potential change after the retesting.

PROJECT NOISE LIMIT

The project noise limit is 10 dB higher than the minimum of the two locations. For daytime the limit would be 59 dBA (49 dBA + 10 dB), and for nighttime the limit is 50 dBA (40 dBA + 10 dB).

NOISE MODELING

The equipment that will generate sound from this Project includes:

- Two Air Handling Units (AHU)
- Two Cooling Towers (CT)
- Loading dock Exhaust Fans
- Multiple Garage Exhaust Fans
- Multiple General Exhaust Fans
- Multiple Exhaust Air Handling Unit (EAHU)
- Multiple Emergency Generators

All of the above equipment will be located on the roof of Building A or Building B. We will conduct a noise evaluation using Cadna/A acoustic modeling software, which complies with the international standard ISO 9613-2, "Attenuation of sound during propagation outdoors -- Part 2: General method of calculation". All rooftop equipment will be evaluated for sound transmission to abutting properties, especially the Wingate Residences at Needham located at 235 Gould Street. As necessary to achieve noise limits, we will recommend noise control features such as acoustic screens/barriers, silencers, acoustic louvers, enclosures, and other treatments.

SUMMARY

We believe the Project at 557 Highland Avenue will be compliant with the local and State limits noted above, given the potential use of sound mitigation. Once we have completed our evaluation, a final report will be issued that will document the predicted sound levels at various receptor points.

Please contact me at 617-499-8058 or mBahtiarian@acentech.com with any questions or comments.

Sincerely,

ACENTECH INCORPORATED

Michael Bahtiarian, INCE Bd. Cert.

Cc: Marc Newmark, Acentech Ben Stracco, Stantec

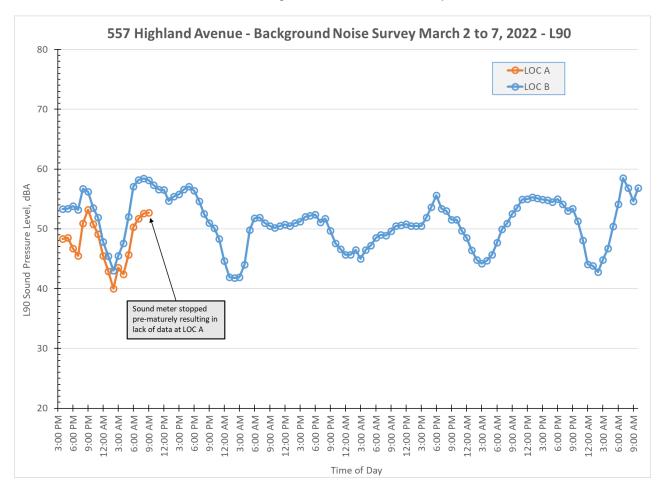
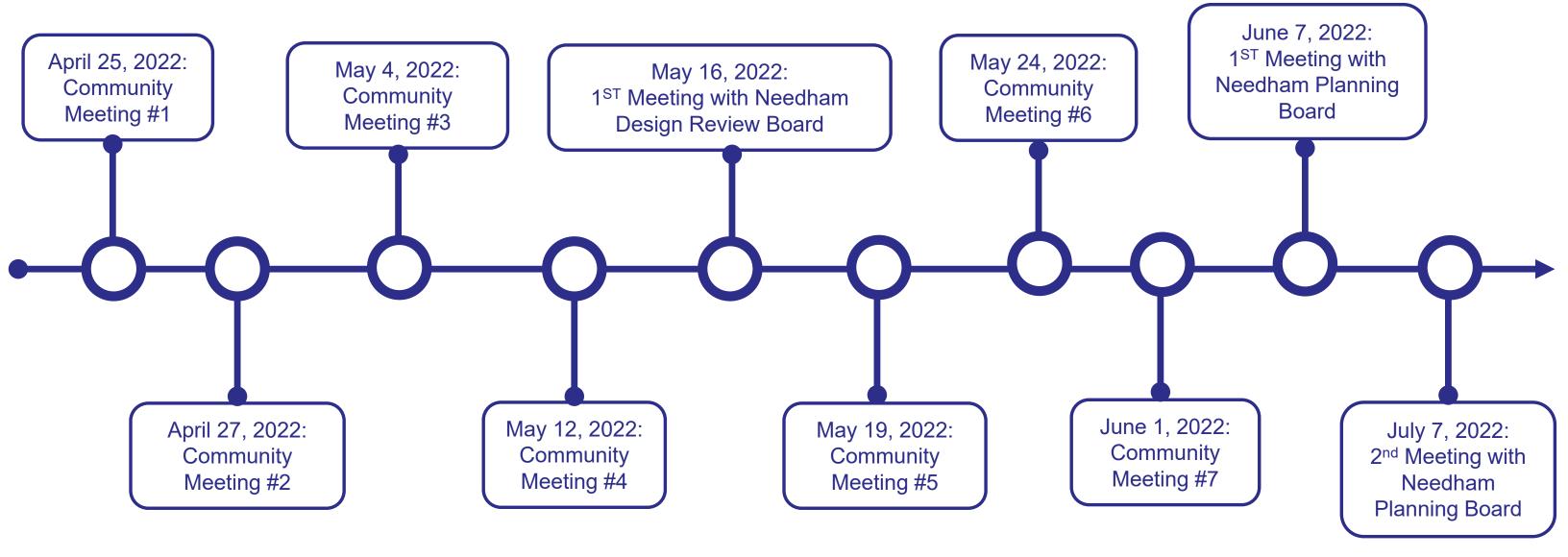


FIGURE 1: Background Sound Survey Monitoring Locations, A & B

FIGURE 2: Background Sound Levels, hourly L₉₀, dBA


EXHIBIT F

JULY 7, 2022 HEARING PRESENTATION (557 HIGHLAND AVENUE)

[see attached]

PROJECT OUTREACH

ADDITIONAL PROJECT MEETINGS:

- -TOWN PLANNING
- -TOWN ENGINEERING
- -FIRE DEPARTMENT
- -TOWN ARBORIST
- -TRAFFIC

PROJECT TEAM

Bulfinch

George Giunta Jr.

Margaret Murphy Community Resources Group SLS Consulting

AGENDA

- 1. Response to Planning Board Comments from June 7th
- 2. Plan Updates in Response to Comments on June 7th
- 3. Transportation Overview
- 4. Questions and Answers

EXHIBIT A

RESPONSES TO TOWN OF NEEDHAM PLANNING BOARD COMMENTS AT JUNE 7, 2022 PUBLIC HEARING (557 HIGHLAND AVENUE)

Question/Topic	Response					
PLANNING BOARD						
Whether the current setback on Gould Street is measured from the current layout of the street.	The plan filed with the Special Permit application contemplates that all of the Gould Street improvements will be subject to an easement in favor of the Town of Needham for public travel. Accordingly, the plan measures all setbacks and dimensional requirements based on the existing lot. The Applicant is working with Town Counsel regarding the application of setbacks in the context of the proposed roadway improvements.					
Provide an itemized list of strategies to address climate change as referenced in the applicant's cover letter.	Impacts from climate change on the Project may include urban flooding and extreme heat events. With respect to urban flooding, the Property is located in Zone X (area of minimal flood hazard) according to FEMA Flood Insurance Rate Mapping. The existing site consists almost completely of impervious buildings and paved parking lots. The proposed Project represents a 1.8-acre decrease in impervious coverage compared to the existing condition. This reduction in impervious coverage, and the addition of a surface stormwater detention basin, will result in decreased stormwater peak runoff rates and volumes from the Site overall. The project represents a significant decrease in peak rates to the offsite MassDOT and municipal drainage systems to which the site is tributary, reducing downstream flooding potential should those systems become surcharged in extreme precipitation events. Extreme heat event mitigation strategies include:					
	improved envelope insulation and infiltration to minimize cooling demand and better maintain indoor temperature conditions; high efficiency chilled water plant to minimize cooling demand and energy usage; laboratory exhaust monitoring controls to minimize outside air cooling load.					

Question/Topic	Response
Whether the planned solar array will violate any height restrictions in zoning.	Pursuant to Section 4.11.2 of the Zoning By-Law, the parking garage may be allowed a maximum height of 55 ft. by special permit. Pursuant to Section 4.11.1(1)(e) "Structures erected on a building and not used for human occupancy, such as solar or photovoltaic panels and the like may exceed the maximum building height provided that no part of such structure shall project more than 15 feet above the maximum allowable building height, the total horizontal coverage of all of such structures on the building does not exceed 25 percent, and all of such structures are set back from the roof edge by a distance no less than their height."
	The parking structure is proposed at 55 ft. in height and the Applicant has requested a special permit for this increased height.
	The proposed solar photovoltaic canopies on the parking structure may not exceed the 15 ft. limit imposed by Section 4.1.1(1)(e), which we assume is applicable to parking structures, depending upon final design. However, the proposed solar photovoltaic canopies would likely exceed the maximum horizontal coverage limitation of 25%.
Is there an opportunity to further reduce parking and what the impacts on the project might result?	The Project is requesting a reduction in proposed parking based upon documented employment densities of other peer research and development centers in eastern Massachusetts. With approximately 1,408 parking spaces proposed on-site, there will be adequate parking provided for the Project.
Can additional green space be incorporated into the design?	The site design has been revised to address prior community comments with an aim to include less grass and to maximize diverse and native plantings.
Will all amenities be accessible by the community?	All outdoor amenities for the Project are intended to be available to the public, as will the retail/restaurant tenant spaces.
Can the bike lanes/infrastructure be designed to favor families instead of commuters?	In close consultation with our neighbors, we are working to develop transportation improvements, including separated bike lanes/infrastructure that

Question/Topic	Response
	address neighborhood concerns along Gould Street on or adjacent to the Property.
Can the scale of the structures along Gould Street be further offset or reduced?	As we further studied moving the North Loading Dock from the Gould Street elevation to the north side of the building, we have studied different fenestration options which may help the building read at a smaller scale on this elevation, but will still provide the areas needed to best serve the building tenants and community. Additional trees/planting are being considered in order to help further screen the building from view along Gould Street.
Can the planned greenbelt be connected to the park/trail across from TV Place on neighboring property?	This is currently part of a separate property at 0 Gould Street and no changes to this property are anticipated at this time.
What will acoustic levels be from rooftop mechanicals?	The Applicant has engaged Acentech as an acoustical consultant to provide a qualitative report on this topic and the results of the report are included as Exhibit E to this letter.
Provide additional clarity on loading dock operations and whether loading dock access can be provided off of TV Place rather than facing Gould Street.	Due to the location of the garage structure, as required by the recent rezoning, locating the North Building's loading dock off of TV Place was not achievable. However, the team has reviewed moving the loading dock to the north side of the North Building so the loading dock no longer faces Gould Street, which adds additional window area and a park along the west face of the North Building.
Has the Fire Department approved of the driveway/roadway widths and can a permeable paving material be used for emergency lanes?	In our meeting with the Fire Department on March 24, 2022, the Fire Department requested fire access lanes around the building which are being provided. These lanes are to be 18' minimum width, but 20' preferred due to snow clearing. The landscape architect is planning to provide the fitness path as bituminous concrete or gravel, then flank the sides with permeable structured grass or permeable pavers if allowed by the Fire Department.

Question/Topic	Response
Can additional public transportation be provided through relocating or adding an MBTA bus route?	The Applicant will reach out to MBTA to evaluate the feasibility of providing additional MBTA service. However, in light of the MBTA's Bus Network Redesign plan, released in May 2022, which proposes to maintain Route 59's existing alignment in Needham while eliminating route variations in Newton, the Applicant thinks it unlikely that the MBTA will agree to shift a segment of Route 59 from serving residential neighborhoods to serving the Project site.
	The Applicant will be providing a direct shuttle service (via use of an electric shuttle) that will connect the site with nearby transit nodes.

EXHIBIT B

RESPONSES TO TOWN OF NEEDHAM DEPARTMENT COMMENTS (557 HIGHLAND AVENUE)

Question/Topic	Response					
FIRE DEPARTMENT						
Confirm with the Fire Department to ensure public safety vehicle access during the winter.	Final plans will be resubmitted for Fire Department approval including all truck turn requirements, etc., to confirm acceptable access as is required by applicable codes and regulations.					
POLICE DE	PARTMENT					
Address potential for use of cut-through streets off of Gould Street and address potential use of Noanett, Ellis, Kearney, Beech and Arnold Streets as cut-through streets to avoid light at Gould and Central intersection. Place signage at these locations restricting traffic during commuting hours.	The Applicant will work with the Town to design and install signage at Noanett Road to deter unwanted cut-through turning movements during the weekday peak commuting hours. In addition, the installation of a traffic signal at Central Avenue and Gould Street will improve operations on Gould Street and reduce the desire for vehicles to use side streets as a cut-through by providing gaps for vehicles to turn efficiently at that intersection. The Applicant will supplement these actions with information dissemination and enforcement funding in connection with close collaboration with the Needham Police Department.					
Address potential impacts on Hunting and Greendale from drivers utilizing these streets during hours of heavy traffic on Route 128.	Traffic volumes on Hunting and Greendale have decreased in the last several years due to the completion of the Route 128 add-a-lane project in the area, and most notably, due to the implementation of the new interchange connection at Kendrick Street. The Project is expected to add only a very small number of new trips to Hunting and Greendale, as the additional southbound left-turn lane on Gould Street will make it easier for drivers from the site to directly access Route 128 via Highland Ave. In addition, the Applicant will fund the installation of radar embedded speed limit signs along Hunting Road as a measure to deter speeding during off-peak hours.					

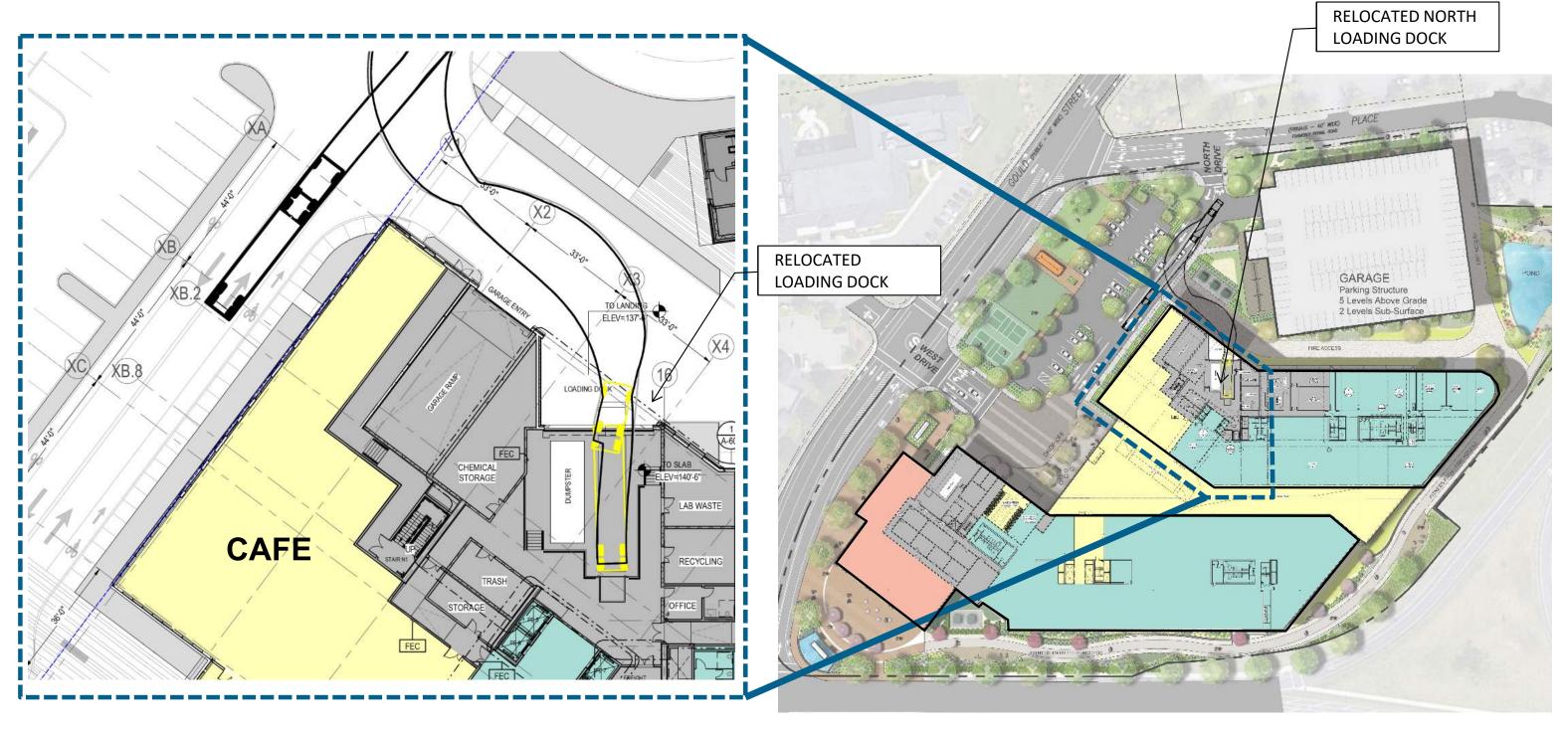
Question/Topic	Response		
Confirm that walking paths, bike paths, and similar spaces running around perimeter of project site have adequate emergency vehicle access.	The perimeter paths along Highland Avenue / Route 128 have been designed with stabilized gravel shoulders that will provide 20' wide emergency access. A 20' wide gravel access drive has also been provided around the proposed garage.		
BUILDING D	EPARTMENT		
The site as presented appears to meet the zoning regulations for the site, Special Permits are required for some dimensional requirements based on the design of the structures.	The Applicant has requested such special permit relief in its Application.		
	S DEPARTMENT		
We are seeking clarification for the facility's proposed water use of 129,172 GPD while the wastewater design flow generation is 54,554 GPD.	Water demand and sewer generation for lab uses can vary and are highly dependent on the specific processes involved. These numbers have been estimated by the Project's MEP Engineer. The difference between the water demand and sewer generation represents water that will be consumed or otherwise used up by lab processes and mechanical equipment (such as evaporative cooling).		
We expect to work with the developer on determining the optimum water loop design. The current proposal shows a 10-inch water connection to the site off a 12-inch main on Gould Street and a connection to an existing 8-inch water main on TV place. The additional loop connection may be more optimum if connected from Highland Avenue in front of the development instead of, or an addition to the 8-inch on TV Place connection.	The Applicant will work with the Town to coordinate the water loop connection points. Connections to the 12-inch mains in Highland and Gould as described can be incorporated into a future revised utility plan.		
We concur with traffic comments/recommendations prepared by GPI in their April 25, 2022 letter to the Planning and Community Development Office.	Reponses to the peer review comments by GPI are included as Exhibit C .		
We expect the Developer to work with the town in providing an alteration/taking plan and recordings for a new Road Right of Way layout on Gould Street and to optimize the traffic signals at Highland at Gould.	The Applicant will work with the Town to develop and finalize the necessary alteration/taking plan and recordings for a new Road Right of Way layout on Gould Street and to optimize the traffic signals at Highland at Gould.		

Question/Topic	Response
For the new facility, four times the increased flow equates to a total of 126,004 GPD I/I removal anticipated from the development. This may be satisfied by either undertaking a construction project or paying a fee to the Town's I&I program at a rate of \$8.00 per gallon required to be removed. We are in the process of analyzing the target areas for the inflow/infiltration to be removed and expect to work with the developer through the site plan approval process	The Applicant will work with the Town to satisfy the I/I removal requirements.
As part of the NPDES requirements, the applicant must comply with the Public Outreach & Education and Public Participation & Involvement control measures. The applicant shall submit a letter to the town identifying the measures selected and dates by which the measures will be completed in order to incorporate it into the Planning Board's decision If emergency generators are proposed, they should indicate on the plans with proper screening and noise reduction according to a sound study for the proposed generators	The Applicant understands that the Town's Stormwater Management Program, prepared in accordance with NPDES MS4 General Permit, requires the Town to perform public education and outreach / public involvement and participation. The Applicant will work with the Town to satisfy any of these requirements applicable to the Project. Emergency Generators will be provided as required by code for life safety and emergency uses. Separate tenant backup generators may also be provided to support the lab and office uses of the building. All emergency generators are currently planned to be located on the roofs behind the mechanical screen walls with final number and locations being determined. The generators will be designed to meet all sound and noise reduction requirements of the
PUBLIC HEAI	Town and state. LTH DIVISION
Food Establishments will require approval through Food Permit Plan Review, including evaluation of adequacy of dumpsters, grease traps, etc.	Upon selection of final tenants for the restaurant space, all Food Establishment tenants will undergo the necessary permitting and approval process, including review by Needham's Public Health Division. Adequate grease traps are planned for the retail and restaurant space with final design to be determined as the Project advances and tenants are chosen. There will be interior waste/recycling rooms.
Continue working on environmental remediation of the site and provide continual updates to Public Health on remediation efforts.	The Applicant will comply with applicable environmental laws and will provided updates to the Needham Public Health Department as appropriate.

Question/Topic	Response			
Obtain MassDEP approval for reclaiming water,	No wastewater re-use is planned for the Project. The			
specifically for - cooling tower water, toilet and	Project will capture and reuse stormwater and will			
urinal flushing, boiler feed, industrial process water	file for necessary MassDEP permitting.			
and irrigation for landscaped areas, etc. All these				
uses are allowed under 314 CMR 20.00., if approved.				
Any biolaboratory proposed as part of the Project	The Applicant will require any life sciences tenants			
must complete the Public Health Division's online	to comply with all applicable rules and regulations.			
permitting application including provision of proper				
biohazardous waste containment.				
DESIGN REVIEW BOARD				
Provide Design Review Board with updates to project	The Applicant intends to submit the information			
landscaping, lighting, and screening in connection	requested by the Design Review Board's comments			
with the Design Review Board's comments.	for the Board's consideration.			

WHAT WE UPDATED - REV. #3, 7/07/2022

- 1. Relocated North Loading Dock and Garage Access from Gould St. Elevation around to Service Driveway
- 2. Studied incorporation of Family-Friendly separated bike lanes along Gould St.
- 3. Roadway improvements on Gould St.



PROPOSED DESIGN REV #3, 7/07/2022: SITE PLAN

PROPOSED DESIGN REV #3, 7/07/2022: LOADING DOCK

PROPOSED DESIGN REV #3, 7/07/2022: AERIAL LOOKING NORTH

PROPOSED DESIGN REV. #3, 7/07/2022: AERIAL LOOKING N-W

PROPOSED DESIGN REV. #3, 7/07/2022: PEDESTRIAN VIEW AT GOULD

PROPOSED DESIGN REV. #3, 7/07/2022: AERIAL LOOKING SOUTH

Highland Innovation Center
557 Highland Ave, Needham, MA
Transportation Summary Focus

Planning Board Meeting #2 – July 7, 2022

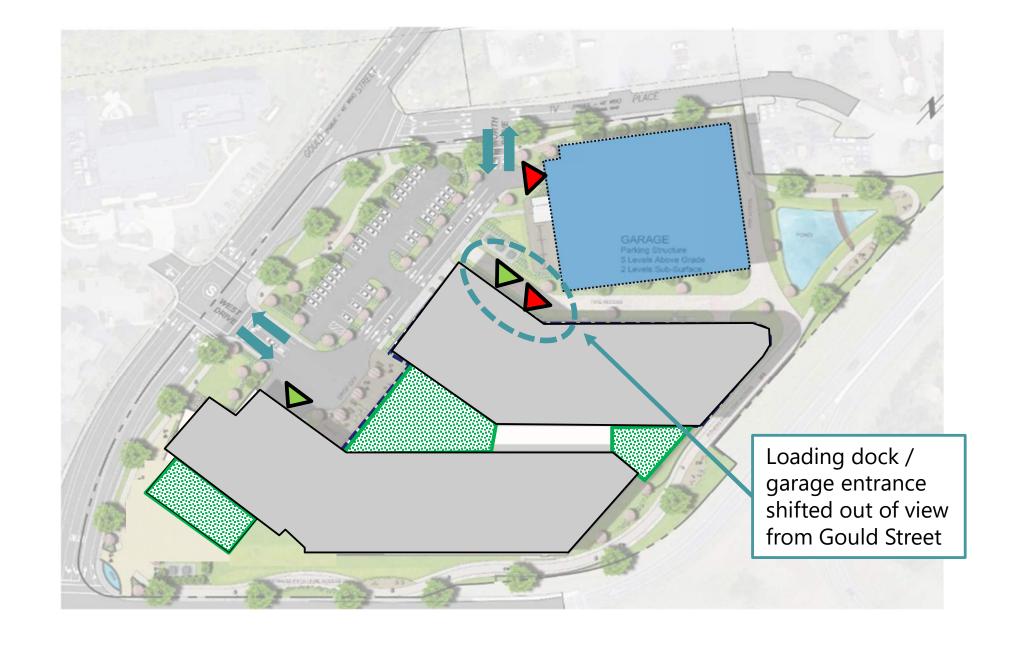
Sean Manning, PE | smanning@vhb.com

Matt Duranleau, PE | mduranleau@vhb.com

Highland Innovation Center (557 Highland Avenue) Transportation Summary

Agenda

- Project Summary
- Traffic Study Methodology
- Project Trip Generation
- Transportation Mitigation


Project Site Plan

Building Program

Use	Size (SF)
Office	248,347
R&D	248,347
Retail	10,000
Total	506,694

Transportation Study Process

Comprehensive Transportation Impact and Access Study conducted by VHB supporting both Special Permit (town) and MEPA (state) application processes

Prior to study:

- Transportation Scoping Letter submitted to MassDOT.
- Coordination with Town of Needham and Greenman-Pederson, Inc. (GPI) (the Town's transportation consultant).
- Careful review of the 2020 GPI Transportation Study and related outcomes commissioned by the Town in connection with the recent rezoning effort for this site.

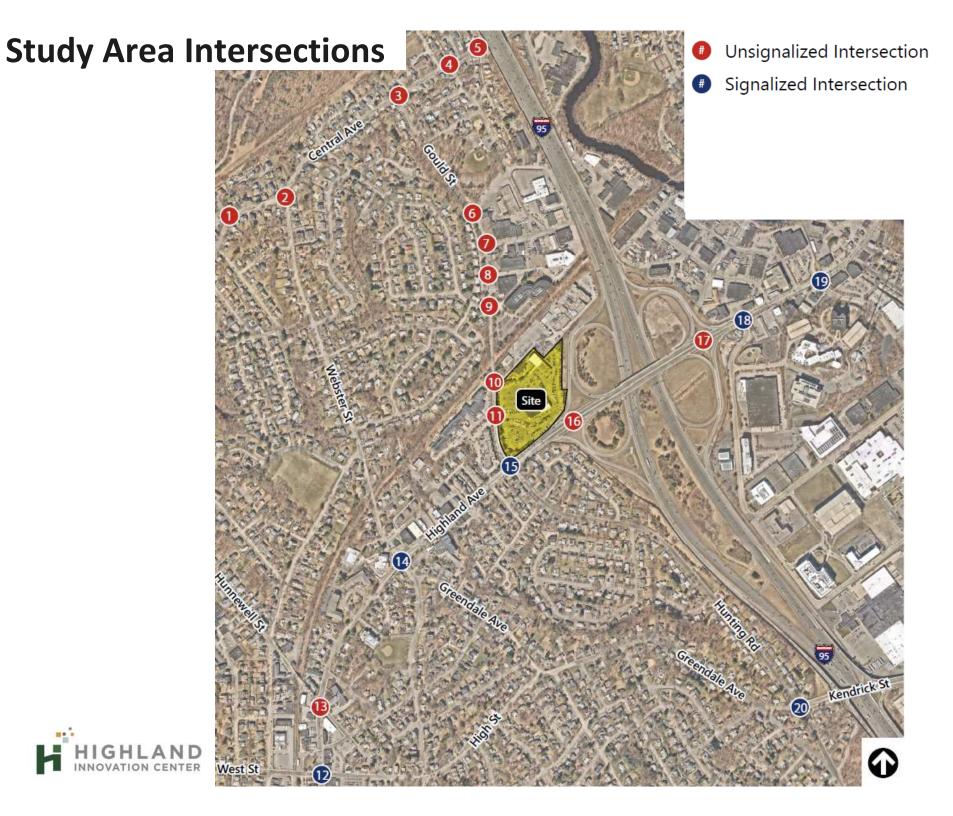
Local Submittal Timeline:

- Special Permit Submission with Traffic Study: April 8, 2022
- Neighborhood community meetings and coordination with Town departments: April-June 2022
- GPI Peer Review report: May 27, 2022
- First Planning Board Meeting: June 7, 2022

State Submittal Timeline:

- State MEPA ENF Submission with Traffic Study: April 1, 2022
- Certificate / Comment Letters Received: May 9, 2022
- Draft Environmental Impact Report to be submitted July 15, 2022

Traffic Study Overview


- Review of Existing (2022) Conditions
- Assessment of Future (2029) Conditions without the proposed Project
 - > Includes completion of MassDOT reconstruction of Highland Avenue
 - > Includes other nearby developments (100 West Street, Boston Children's Hospital at Founders Park, Newton Northland Development)
- Assessment of Future (2029) Conditions with the proposed Project
 - > Impacts with and without mitigation
 - Summary of Transportation mitigation and TDM

- Central Avenue at Cedar Street
- Central Avenue at Webster Street
- Central Avenue at Gould Street
- Central Avenue at Hampton Avenue
- Central Avenue at River Park Street
- Gould Street at Ellis Street
- Gould Street at Kearney Road
- Gould Street at Station Road
- Gould Street at Noanett Street
- Gould Street at TV Place
- Gould Street at Muzi Ford/Wingate Res.
- Highland Avenue at West Street
- Highland Avenue at Hunnewell Street
- Highland Avenue at Webster Street
- Highland Avenue at Gould Street
- Highland Avenue at I-95 SB Ramps
- 17) Highland Avenue at I-95 NB Ramps
- Highland Avenue at 1st Avenue
- Highland Avenue at 2nd Avenue
- Kendrick Street at Hunting Road

Trip Generation | Existing Site Trips

Existing Site Vehicle Trips						
Weekday Daily						
Total 887						
Weekday Morning Peak Hour						
Enter	37					
<u>Exit</u>	<u>24</u>					
Total	al 61					
Weekday Evening Peak Hour						
Enter	29					
<u>Exit</u>	<u>57</u>					
Total	87					

Note: based on empirical counts conducted by VHB in July 2021, during COVID-19, and during the "slow" portion of the season

- Car wash alone was known to service up to 1,300 cars/day at peak times with daily averages between October and May approximately 600 cars/day as reported by Felix Taranto of Wash World, the car was operator since the 1990s
- Car wash was busiest in late Winter/Spring, less busy in Summer
- Existing daily trips for Muzi site included Chevrolet dealership,
 Ford dealership, body shop, service center, new car sales, used car
 sales, outsourced sales, and parts pick-up (new and used)
 including gas, fuel, hazardous waste, and other removals
 constituting commercial trucks
- Existing trips quantified during COVID (July 2021) and **pre-COVID volumes were likely measurably higher** than what is quantified in the Transportation Study (conservative assumption)

Trip Generation | Estimated Proposed Site Trips

Adjusted Vehicle Trips

	Office	R&D	Retail	Total Driveway Trips	Pass-by	Existing Site Trips	Total Net-New Vehicle Trips
Weekday	Daily						
Total	2,658	2,763	629	6,050	(-158)	(-887)	5,005 *
Weekday	Morning	Peak Hour					
Enter	334	209	11	554	(-2)	(-37)	515 *
<u>Exit</u>	<u>42</u>	<u>44</u>	<u>9</u>	<u>94</u>	<u>(-2)</u>	<u>(-24)</u>	<u>68</u> *
Total	376	253	20	649	(-4)	(-61)	584 *
Weekday	Weekday Evening Peak Hour						
Enter	62	39	36	136	(-15)	(-29)	92 *
<u>Exit</u>	<u>303</u>	<u>204</u>	<u>38</u>	<u>545</u>	<u>(-15)</u>	<u>(-57)</u>	<u>473</u> *
Total	365	242	74	681	(-30)	(-87)	565 *

- * Trip Generation Likely Over-Estimated, Does Not Account For:
 - 1. Local Trip Rates
 - 2. Transit Use or Walk / Bike Trips
 - 3. Work from Home / Hybrid Work Environment

Trip Generation | "Actual" Site Trips - Local Trip Rates

Estimated vs "Actual" Trip Rates

- Estimated trip rates based on national data from the Institute of Transportation Engineers (ITE) between the 1980s and 2010s
- Data provided based on three different land use codes: Office, R&D, and Retail
- Local trip rate data for office and R&D sites was reviewed from actual developments in the City of Cambridge from 2017/2018 to determine a more accurate representation of Project-generated trips

Office Trip Rate per 1,000 SF

	ITE National Data	Local Cambridge Data	Percent Difference		
Weekday Da	ily				
Total	10.25	8.29	-19%		
Weekday Mo	orning Peak Hour				
Total	1.46	1.15	-21%		
Weekday Evening Peak Hour					
Total	1.41	1.25	-11%		

R&D Trip Rate per 1,000 SF

	ITE National Data	Local Cambridge Data	Percent Difference	
Weekday Daily				
Total	10.65	5.95	-44%	
Weekday Morning Peak Hour				
Total	0.98	0.72	-27%	
Weekday Evening Peak Hour				
Total	0.94	0.72	-23%	

Trip rates include all commuters (drivers, transit riders, walkers, and bikers)

Trip Generation | "Actual" Site Trips – Mode Share

Estimated vs "Actual" Mode Share / Work from Home

- Estimated Site-generated trips assume 100% of commuters will drive to work
- Estimated Site-generated trips do not include the impact of work from home / hybrid work schedules
- Analyses are highly conservative as some commuters will take transit (with shuttle connection), walk, bike, and/or work from home
- US Census data for City of Newton reviewed to determine potential transit/walk/bike/work from home mode share for Site
 - Newton data reviewed as Site is expected to operate more similarly to workplaces in Newton with connections to transit and direct interstate access
- Pre-COVID work from home share assume to double in future (at a minimum) to account for new hybrid work environment

Site Mode Share

	Vehicle	Transit, Walk, Bike	Work From Home
Estimated in Traffic Study	100%	0%	0%
City of Newton pre-COVID data ^a	77%	16%	7%
Potential Site "Actual" Mode Share b	72%	14%	14%

a – Mode shares determined from US Census Journey to Work Data (2012-2016) for workplaces located within the City of Newton, MA.

b – The estimated work from home mode share was doubled to account for the impacts of COVID-19 on the remote working environment.

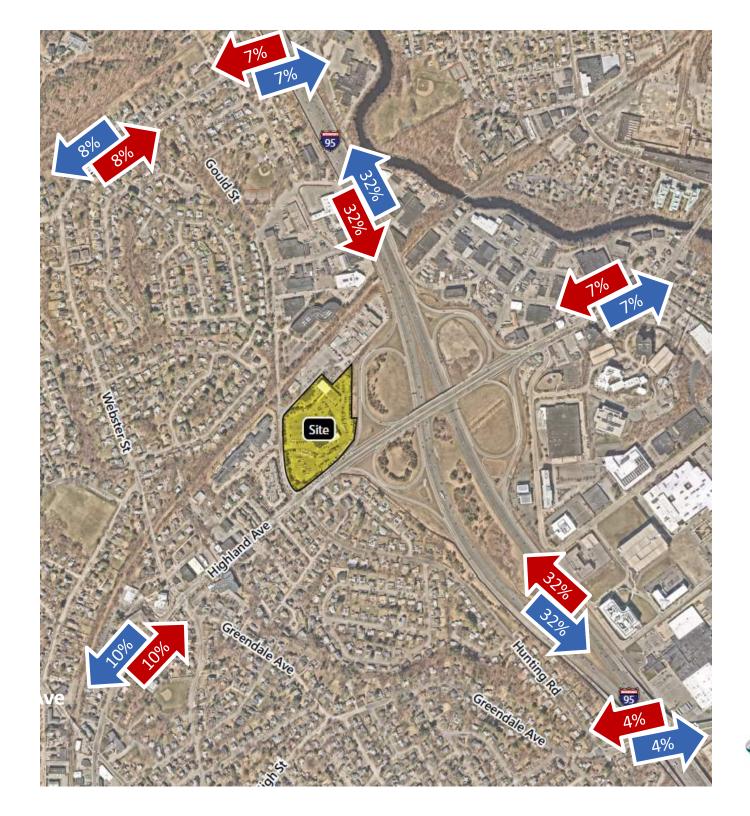
Trip Generation | "Actual" Site Trips

"Actual" Site-Generated Trips estimated based on

- 1. Local Trip Rates
- 2. Transit Use and Walk / Bike Trips
- 3. Work from Home / Hybrid Work Environment
- To be conservative, traffic analyses conducted without these estimated credits applied
- All roadway improvements designed to accommodate "worse-case" scenario

Total New Project Vehicle Trips

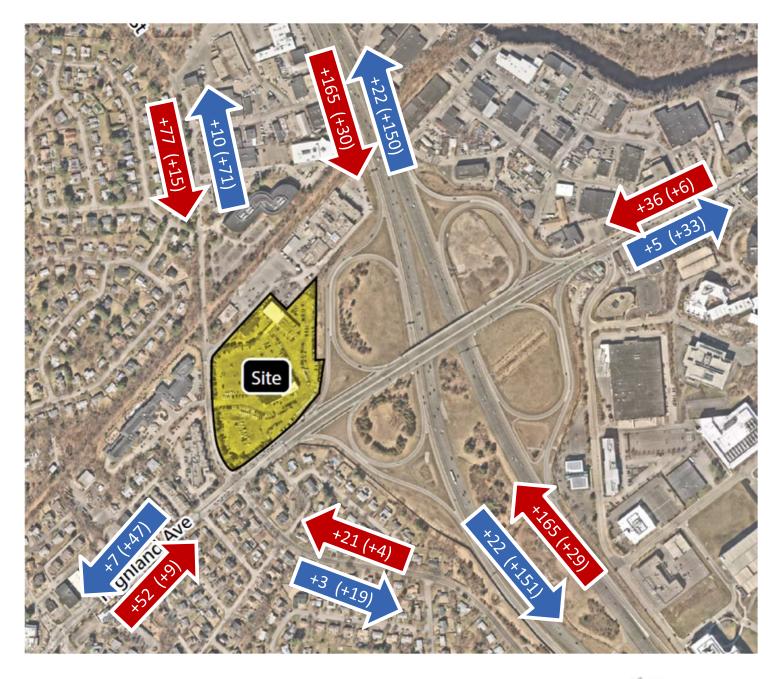
	Estimated New Vehicle Trips	"Actual" New Vehicle Trips	Percent Difference	
Weekday Daily				
Total	5,005	2,072	-59%	
Weekday Morning Peak Hour				
Enter	515	291		
<u>Exit</u>	<u>68</u>	<u>-12</u>		
Total	584	279	-52%	
Weekday Evening Peak Hour				
Enter	92	29		
<u>Exit</u>	<u>473</u>	<u>273</u>		
Total	565	302	-47%	



Trip Distribution

Source: Trip Distribution based on US Census Journey to Work Data (2012-2016) for workplaces located within the Town of Needham, MA.

New Project- Generated Trips


Entering

Exiting

- * Trip Generation Likely Over-Estimated, Does <u>Not</u> Account For:
- 1. Transit Use or Walk / Bike Trips
- Work from Home / Hybrid Work Environment

Based on higher Trip Generation to determine proposed mitigation

Parking Supply

Type	Spaces	
Vehicle	1,408 spaces	
Bike	154 spaces	

- Small surface parking lot for patrons and visitors
- Stand-alone garage and underground parking for employees

25% of all parking spaces will include **EV charging stations**

Parking Demand

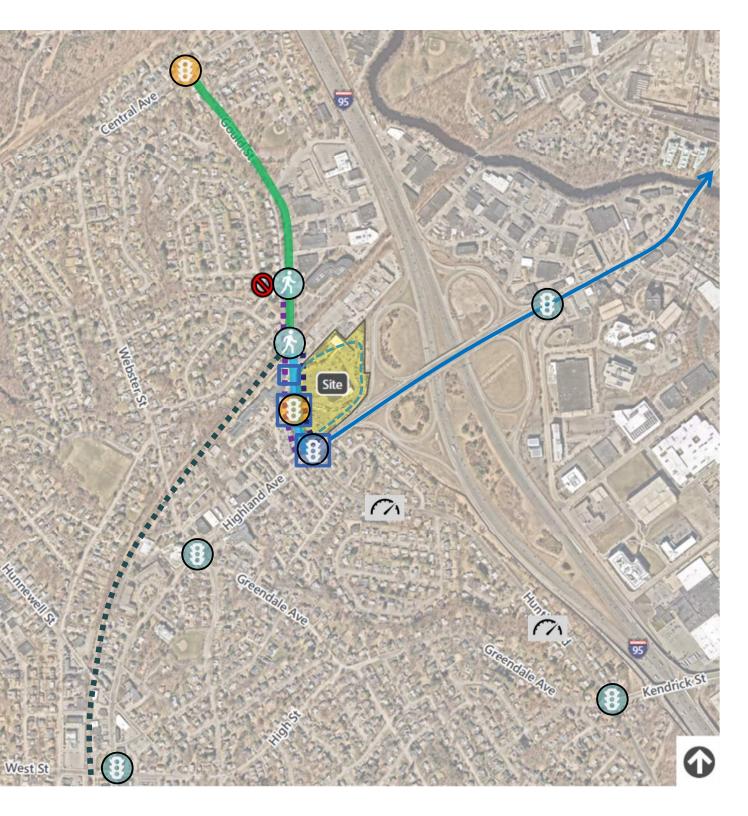
Conservative Analysis based on 100% Auto Use

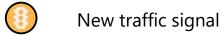
The proposed Project parking supply of up to **1,408 off-street parking spaces** exceeds the expected demand.

Use	Size (SF)	Employee/Patron Density ^a	VOR ^b	Parking Demand
Office	248,347	3.33/ksf	1.15	719 spaces
R&D	248,347	2.46/ksf	1.15	531 spaces
Retail	10,000	3.33/ksf	1.15	29 spaces
Total				1,279 spaces ^c

- a Based on Town of Needham zoning requirements for office and retail and employee density data from existing sites in Cambridge for R&D
- b Vehicle Occupancy Rates (VOR) based on Existing data for workplaces within Needham
- c Would result in parking rate of 2.52 spaces per kSF

Parking demand likely to be lower than 1,279 spaces due to transit/walk/bike commuters and hybrid work environment 25% of all parking spaces to include **EV charging stations**





Mitigation Measures

Shared Bicycle Lane Markings and Signage

Reconstruction of Sidewalk

■ ■ New Pedestrian Facility

Pedestrian Infrastructure Improvements

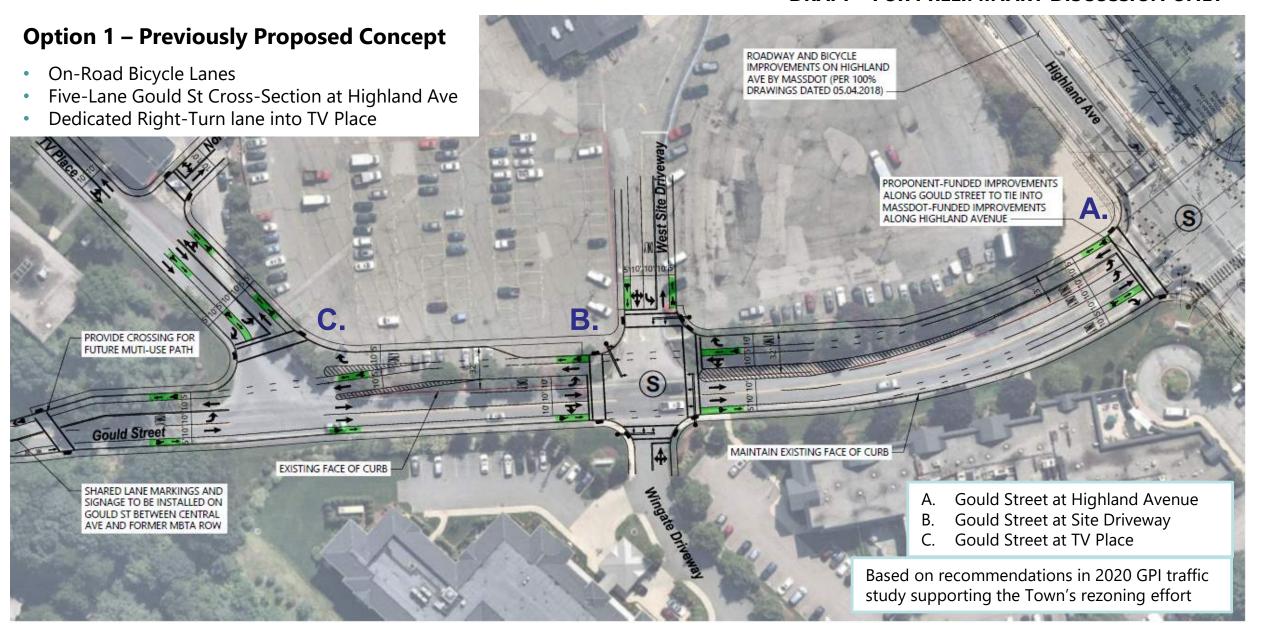
Signage to deter cut-through traffic during peak hours

Installation of radar-embedded speed limit signs

– – On-Site Walking/Fitness Path

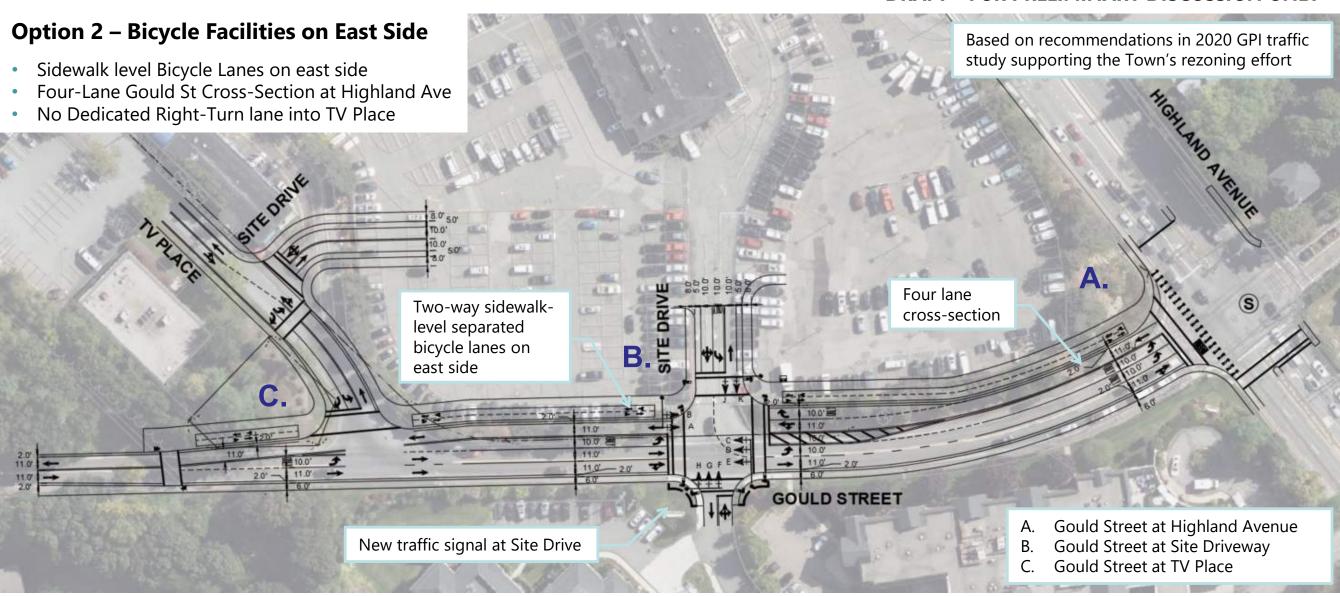
Shared Use Path Feasibility Study

Shuttle Service (Connection to Transit Station)



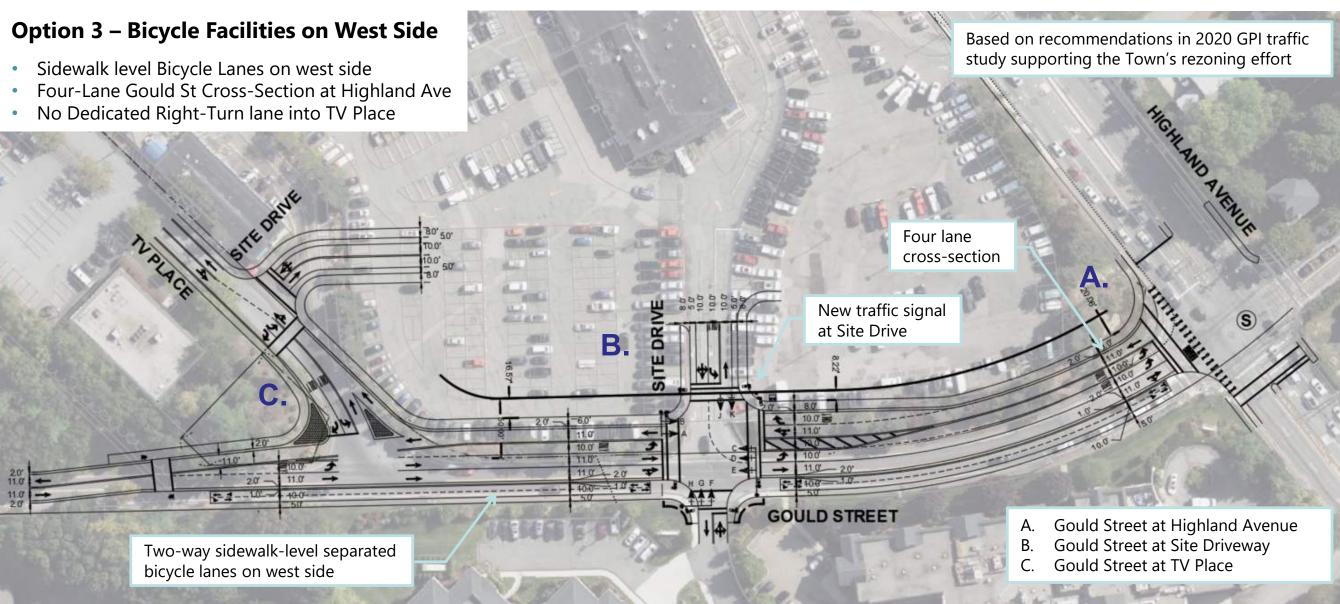
Transportation Mitigation | Gould Street

DRAFT – FOR PRELIMINARY DISCUSSION ONLY



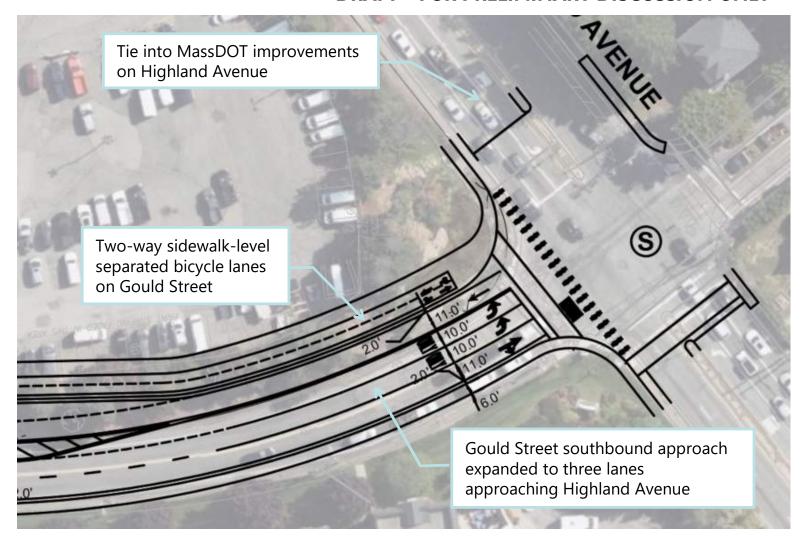
Transportation Mitigation | Gould Street

DRAFT – FOR PRELIMINARY DISCUSSION ONLY



Transportation Mitigation | Gould Street

DRAFT – FOR PRELIMINARY DISCUSSION ONLY

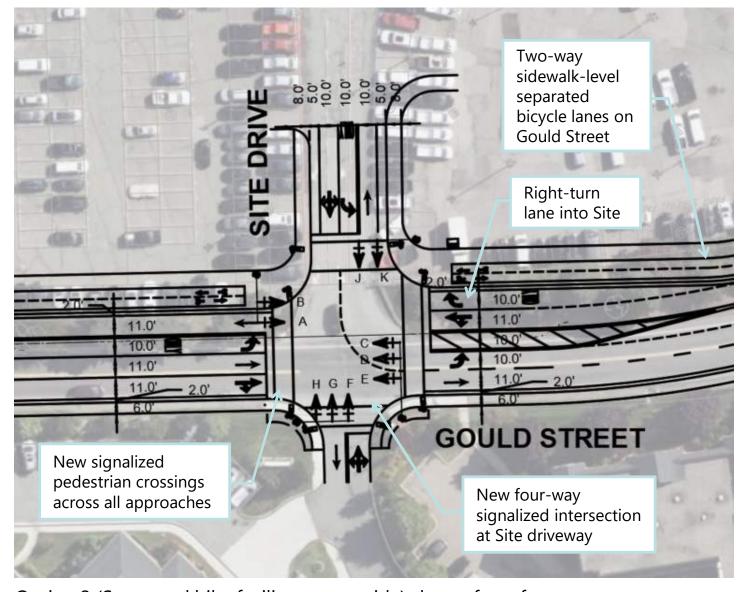


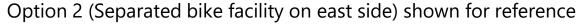
Transportation Mitigation | Gould Street at Highland Avenue

DRAFT – FOR PRELIMINARY DISCUSSION ONLY

A.

Option 2 (Separated bike facility on east side) shown for reference

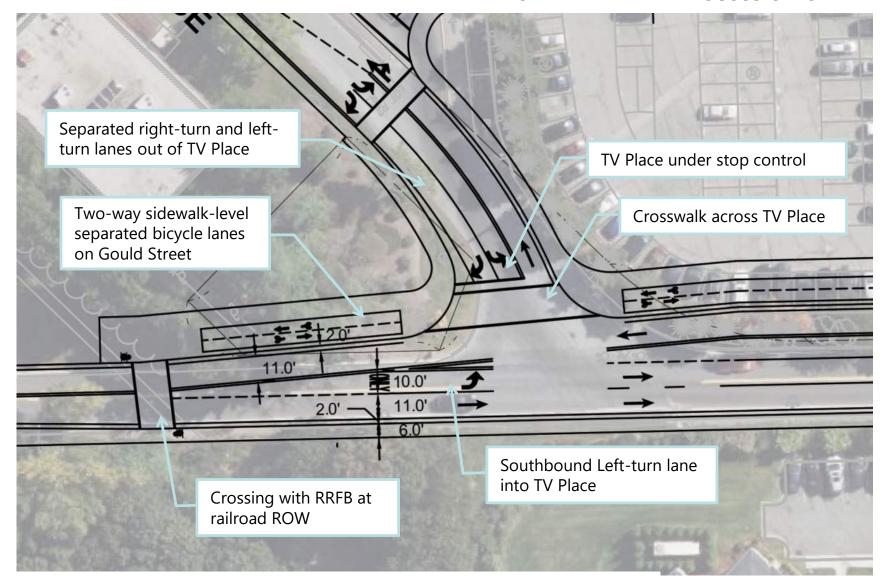


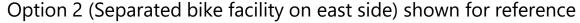


Transportation Mitigation | Gould Street at Site Driveway

DRAFT - FOR PRELIMINARY DISCUSSION ONLY

B.

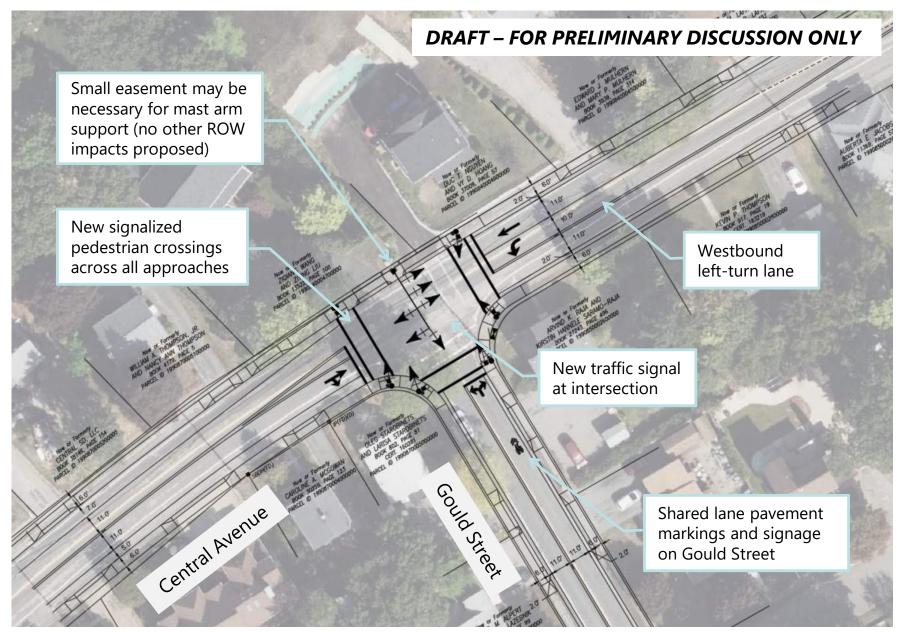




Transportation Mitigation | Gould Street at TV Place

DRAFT - FOR PRELIMINARY DISCUSSION ONLY

C.



Transportation Mitigation | Gould Street at Central Avenue

Transportation Mitigation | Pedestrian and Bicycle Accommodations

- 1. Up to **154 bicycle parking spaces** on-site
 - 104 secure spaces for employees in bike room
 - 50 spaces for visitors in outdoor public bike racks
- 2. Walking/fitness path on-site (0.5 miles) open to public
- 3. Construction of **two-way sidewalk-level separated bike lanes** on Gould Street between Highland Avenue and former MBTA ROW to provide a family-friendly facility
- Full **Reconstruction of sidewalk** on west side of Gould Street between Highland Avenue and Noanett Road

Arsenal Street in Watertown, Massachusetts

Transportation Mitigation | Pedestrian and Bicycle Accommodations (cont.)

- Support Town of Needham with additional funding for feasibility study of converting the former MBTA railroad ROW north of the Project Site into a **shared use path**
- Construction of crosswalk across Gould Street at former MBTA ROW with Rapid **Rectangular Flashing Beacon (RRFB) or LED Warning signs**

Rapid Rectangular Flashing Beacon (RRFB)

LED lights flash only when the pedestrian push button is activated to warn drivers that a pedestrian is present in the crosswalk and lights flash only for the time needed to safely cross the roadway

LED Pedestrian Warning Sign

Illuminates 24/7 the pedestrian warning sign for added awareness

Transportation Mitigation | Transit Connection

- Direct connection to nearby public transit stations via an electric shuttle
- Potential connections to **Green Line D Branch** (at Newton Highlands) and/or **Commuter Rail** (at Needham Heights)
- Provides access to Site for employees who live closer to Boston

Transportation Mitigation | Noanett Road

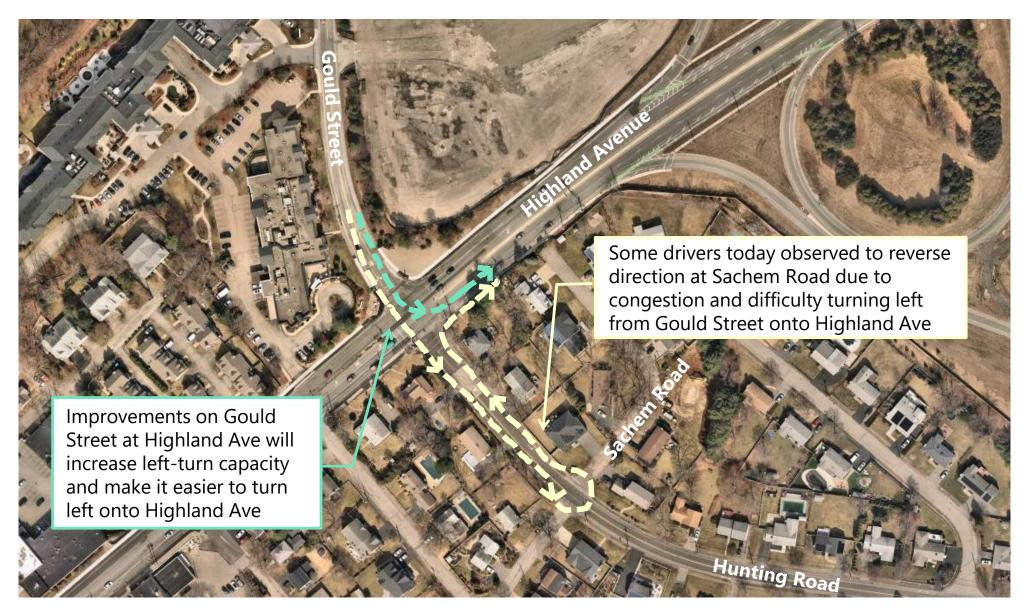
Mitigation proposed based on feedback from neighborhood residents:

- Reconfiguring the sidewalk ramps on the northwest and southwest corners of the intersection with Gould Street to be ADA accessible and striping of a crosswalk across the Noanett Road approach to Gould Street
- Installing "Do Not Enter" signs between 7:00-10:00 AM and 3:00-6:00 PM such that the road will be limited to residents only – no through traffic.
- Commissioning a police detail stationed in an unmarked cruiser, who will 3. issue citations to violators upon opening of the project for the first three months and at such other intervals from time-to-time, as required (as done by the Proponent in Cambridge, MA on Acorn Park Drive)
- Installing a traffic light at Gould Street and Central Avenue to facilitate traffic and encourage users to utilize the Gould/Central light in both directions.
- 5. Installing "Blind Driveway" signs and "Slow Children" signs as needed.

Example of peak period "Do Not Enter" sign in Cambridge, MA

Transportation Mitigation | Hunting Road

- 1. Speed limit signs with embedded radar
 - Alerts drivers to current speed in comparison to posted speed limit to try to slow speeds and increase driver awareness
 - Can be permanent or temporary installments
- 2. Intermittent police speed detail to enforce speed limit
- 3. Traffic monitoring to understand if cut-through traffic activity occurs and when
- 4. Installing directional signage to deter through traffic on Hunting Road



Transportation Mitigation | Sachem Road

Transportation Demand Management (TDM)

Proposed Measures

- 1. Shuttle Service to nearby transit stations
- 2. Transportation Employee Advisor
- 3. Secure/Indoor bicycle parking (104 spaces)
- 4. 50-percent transit pass subsidy
- Emergency ride home
- 6. Carpool assistance and incentives
- 7. Bicycling/walking incentives and amenities
- 8. On-site locker rooms and showers
- 9. On-site amenities for employees to reduce midday trips
- 10. Telecommuting and compressed workweeks
- 11. Display real-time transportation-related information
- 12. Promotional efforts
- 13. EV charging stations (25-percent of all spaces)

Transportation Management Association (TMA):

The Proponent will join and become an active member of the 128 Business Council.

Transportation Monitoring:

Annual traffic collection program for five year, including:

- Parking garage counts
- Intersection counts at four off-site locations
- Intersection capacity analyses
- Travel survey of employees and patrons

Proponent will work with Town of Needham on monitoring commitment to not exceed projected trip generation

Project Mitigation Summary

- Gould St sidewalk level separated bicycle facilities between Highland Ave and former MBTA ROW
- Gould St shared lane markings and signage between former MBTA ROW and Central Ave
- Reconstruction of the sidewalk on the west side of Gould St between Highland Ave and Noanett Road
- Construction of a new pedestrian facility on the east side of Gould St along Site frontage
- New crossing of Gould St at former MBTA ROW with rectangular rapid flashing beacons
- Reconfiguring the sidewalk ramps on the corners of Noanett Rd and Gould St
- Support Town of Needham with Shared use path feasibility study for former MBTA ROW
- Transit connector shuttle service (with electric shuttle)

Targeted Intersection/Signal/Roadway Improvements:

- Highland Ave at Gould St/Hunting Rd: Geometric improvements, signal timing and equipment improvements, expansion of Gould St SB approach, and pedestrian infrastructure improvements
- Central Ave at Gould St: Traffic signal installation and pedestrian infrastructure improvements
- Gould St at Site Driveway/Wingate Driveway: Traffic signal installation, expansion of Gould St cross-section, and pedestrian infrastructure improvements
- Gould St at TV Place: Geometric improvements
- Signal timing modifications at Highland Ave at West St, at Webster St, at 1st Ave, and Hunting Rd at Kendrick St

Speed and Traffic Calming:

- Installation of signage to deter cut-through traffic during the peak hours at Noanett Rd
- Installation of two radar-embedded speed limit signs on Hunting Rd to encourage lower vehicle speeds

FOR ANY QUESTIONS, PLEASE E-MAIL TRANSPORTATION CONSULTANTS.

Sean Manning, PE | smanning@vhb.com | 617.607.2971 Matt Duranleau, PE | mduranleau@vhb.com | 617.607.1584

PUBLIC BENEFITS

- Bicycle lanes incorporated into site circulation
- Plaza adjacent to public retail amenities
- Enhanced pedestrian accessibility
- Ground level activation with retail and community space at the corner of Gould Street and Highland Avenue
- Provide approximately 1,250 permanent jobs at full occupancy
- Provide 300 construction jobs
- Tax revenue of approximately \$5 million (annually), to support Town of Needham's educational and recreational programs, housing initiatives, community and open spaces, and other Town priorities
- Improved water quality and stormwater management
- Improved open space along Highland Avenue

