Stormwater Pollution Prevention Plan (SWPPP)

Department of Public Works
November 2021

DEPARTMENT OF PUBLIC WORKS 470 DEDHAM AVENUE

Stormwater Pollution Prevention Plan (SWPPP)

Needham, MA

Department of Public Works

DEPARTMENT OF PUBLIC WORKS 470 DEDHAM AVENUE

Prepared by: BETA GROUP, INC.
Prepared for: Town of Needham

November 2021

SWPPP Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Authorized Official

Director of Public Works

Title

December 1, 2021

Date

TABLE OF CONTENTS

Introduction	<u>2</u>
1.0 Pollution Prevention Team	
2.0 Description of Facility	2
2.1 Facility Summary	2
2.2 Site Map	2
2.2.1 Inventory of Building	3
2.2.2 Parking Areas	3
2.2.3 Inventory of Vehicles & Equipment	
2.3 Site Drainage & Receiving Waters	
2.3.1 Receiving Waters	
2.4 Potential Pollutant Sources	
3.0 Stormwater Controls	
3.1 Water Quality Limitation Controls	
4.0 Management Practices	θ
4.1 Minimize or Prevent Exposure	θ
4.2 Good Housekeeping	8
4.3 Preventative Maintenance	
4.4 Spill Prevention and Response	10
4.5 Erosion and Sediment Control	11
4.6 Management of Runoff	12
4.7 Salt Storage Piles or Piles Containing Salt	14
4.8 Employee Training	14
4.9 Maintenance of Control Measures	14
5.0 Site Inspections	15
6.0 Recommendations	16
LIST OF TABLES	

- Table 2-1 Inventory of Buildings
- Table 2-2 Impaired Waters Receiving Drainage from the Facility

LIST OF APPENDICES

- Appendix A Site Map
- Appendix B Vehicle Inventory
- Appendix C Summary of Site Activities and Potential Stormwater Pollutants
- Appendix D SWPPP Inspection Form

INTRODUCTION

This Stormwater Pollution Prevention Plan (SWPPP) has been developed by BETA Group, Inc. (BETA) on behalf of the Town of Needham (the Town), Massachusetts, Department of Public Works (DPW) to address the requirements of the United States Environmental Protection Agency (EPA) 2016 National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems (MS4) in Massachusetts, hereafter referred to as the PERMIT. This SWPPP is outlined as follows:

- 1. Pollution Prevention Team
- 2. Description of Facility
- 3. Identification of Stormwater Controls
- 4. Management Practices
- 5. Site Inspections

1.0 POLLUTION PREVENTION TEAM

The Needham DPW has assigned a Pollution Prevention Team (PPT) for this SWPPP. PPT team members and contact information are summarized below. The role of the PPT is to develop, implement, maintain, and revise as necessary, this SWPPP. The PPT also has the following responsibilities:

Name:	Anthony Del Gaizo	Title:	Town Engineer	Department:	DPW
Phone:	781-455-7550	Email:	adelgaizo@needhamma.gov		

Responsibilities: Considers all stages of plan development, inspections, and implementation; coordinates employee training programs; maintains all records and ensures that reports are submitted; oversees sampling program. Responsible for certifying the completeness and accuracy of the SWPPP. Implements the preventative maintenance program; oversees good housekeeping activities; serves as spill response coordinator; conducts inspections; assists with employee training programs; conducts sampling/visual monitoring. Assists in all components of the stormwater program, as needed.

Name:	Melissa Recos, PE	Title:	Project Manager	Company	BETA Group
Phone:	781-255-1982	Email:	MRecos@beta-inc.com		
Responsibilities: MS4 Consultant to the Town					

2.0 DESCRIPTION OF FACILITY

2.1 FACILITY SUMMARY

The DPW facility and Water/Sewer Building are located at 470 Dedham Avenue and 484 Dedham Avenue, respectively in Needham, Massachusetts (the site) and is owned and operated by the Town. Information provided in this, and the following sections is based on observations made during a site visit on January 28, 2020. During the site visit, BETA personnel were escorted by Needham DPW staff who provided a general overview and layout of facility operations, activities performed and material storage information.

The site consists of one irregular-shaped parcel that includes approximately 17.70 acres of land improved with three buildings, one trailer, and one storage shed. The site buildings are located along the southern portion of the property, which is primarily paved. The northern and western portions of the site have an earthen surface and beyond that are wooded areas. To the northeast the Needham Reservoir resides. The site is located in an area primarily used for residential and recreational purposes. The site's location is depicted on the **Site Map** included in **Appendix A**. Pertinent site details, including layout, location of any stormwater outfalls, receiving waters and structural controls, are depicted on the **Site Map**.

2.2 SITE MAP

The facility operates on approximately 5.50 acres out of the total 17.70 acres and contains the structures and other features identified above, shown on the **Site Map** and described in detail in the following sections. Components shown on the site map include as applicable:

- Location of the engineered drainage system, including catch basins, ditches, drain manholes, and treatment BMPs
- Outfalls to a receiving water, and the name of the receiving water
- Direction of surface water flow
- Structural stormwater pollution control measures
- Vehicle fueling areas
- Aboveground storage tanks (indoors and outdoors)
- Salt storage areas
- Materials stockpiles
- Waste disposal areas

2.2.1 INVENTORY OF BUILDING

The site includes the following buildings and structures and their use:

Table 2.1 - Inventory of Buildings

No.	Use	Floor Drain
1	Administration Office	\square Y \boxtimes N
2	Vehicle Washing/Maintenance/Storage	⊠Y □N
3	6 Bay Garage Storage	⊠Y □N
4	Construction Material Stockpile Storage	\square Y \boxtimes N
5	Water/Sewer Building	\square Y \boxtimes N
6	Storage Shed	\square Y \boxtimes N
7	Employee Trailer	\square Y \boxtimes N

2.2.2 PARKING AREAS

Employee parking is provided near the DPW offices.

2.2.3 INVENTORY OF VEHICLES & EQUIPMENT

The Town maintains an inventory of vehicles and heavy equipment. A copy of the inventory is included in **Appendix B**.

2.3 SITE DRAINAGE & RECEIVING WATERS

Drainage at the site generally follows surface topography and flows in a southeasterly direction over paved areas to catch basins on site. Floor drains located in the vehicle storage bay and garage are connected to an oil/water separator, which discharges to two infiltration basins in series and then into Alder Brook. A second oil/water separator is located outside the vehicle washing bay and discharges to the sanitary sewer. Northern portions of the site are used for material stockpiling and storage. This area contains a water quality swale at the northern property line, a third water quality unit, a sediment forebay, and an infiltration basin, which flow southeast towards Alder Brook. Surface runoff flow direction, drainage structures and features are indicated on the **Site Map**.

2.3.1 RECEIVING WATERS

The final point of discharge is Alder Brook, which is listed as a Category 5 Surface Water and given the unique identifier MA72-22, indicating that more than one designated use is impaired and that a TMDL will be required.

Impairments of this water body are shown in Table 2-2, below.

Table 2-2. Impaired Waters Receiving Drainage from the Facility

Water Body Name	ID	Category	Impairment(s)
Alder Brook	MA72-22	5	Nutrient/Eutrophication Biological Indicators
Alder Brook	MA72-22	5	Benthic Macroinvertebrates

The types of impairments documented for this surface water body are related to nutrients and biological indicators. Good housekeeping practices, preventative maintenance and Best Management Practices implemented at the facility are methods to limit potential negative impacts to stormwater. These practices are discussed in **Section 6** of this SWPPP.

2.4 POTENTIAL POLLUTANT SOURCES

An inventory of activities performed at the site and associated potential stormwater pollutants is provided in **Appendix C**. Locations of activities and potential stormwater pollutants are indicated on the **Site Map**.

3.0 STORMWATER CONTROLS

Structural stormwater controls including drainage structures, pipes and conveyances; stormwater best management practices (BMPs) and outfall(s) are shown on the **Site Map**. These controls, used and maintained in accordance with good engineering practices, manufacturer's specifications and management practices detailed in **Section 4.0** below, address the quality of discharges from the site.

3.1 WATER QUALITY LIMITATION CONTROLS

The following control measures are used specifically to address the pollutants contributing to the nutrients and biological impairments in the downstream waterbody:

- Parking lot sweeping
- Catch basin cleaning
- Routine leaf-litter and debris collection
- Storage of potential stormwater pollutants (phosphorus sources, fertilizers, etc.) covered areas
- Water quality units
- Infiltration Basins
- Sediment Forebay
- Water quality swale

4.0 MANAGEMENT PRACTICES

The following sections summarize the management practices (non-structural stormwater controls) to be implemented at the site to mitigate the potential for potential pollutants to impact stormwater.

4.1 MINIMIZE OR PREVENT EXPOSURE

To the extent practicable, either locate materials and activities inside or protect them with storm-resistant coverings in order to prevent exposure to rain, snow, snowmelt and runoff (although significant enlargement of impervious surface area is not recommended). Materials do not need to be enclosed or covered if stormwater runoff from affected areas will not be discharged directly or indirectly to surface waters or to the MS4 or if discharges are authorized under another NPDES permit.

Fueling Areas

Vehicle fueling activities can result in gasoline and diesel fuel entering the storm drain system. Spills can occur by topping off fuel tanks and during deliveries. If possible, fueling areas should be placed under cover in order to minimize exposure. Best management practices for fueling areas include the following:

- Deliveries to fuel tanks and fueling of vehicles and equipment should occur on impervious surfaces with proper containment. Spill response kits should be readily accessible at fueling and maintenance areas.
- Fuel dispenser containment features (grooves in concrete pad perimeter) should be kept free of debris.
- Fueling areas owned or operated by the municipality should be covered.

Vehicle Storage

Rainfall on vehicles and equipment storage areas has the potential to collect pollutants and result in high loads of nutrients, metals, and hydrocarbons in stormwater runoff. To prevent this, best management practices include the following:

- All vehicles, equipment and hazardous waste storage containers should receive regular maintenance and be inspected for leaks or defective parts.
- Vehicles and equipment should be stored on a covered slab or within a building with a common drain that discharges to an oil/water separator.
- Outdoor storage of vehicles and equipment should not occur in areas that drain to the storm drain system unless adequate devices are in place to remove oil, sediment and other pollutants.
- Vehicles with fluid leaks should be stored indoors or containment be provided until repaired.

Vehicle and Equipment Maintenance

Vehicle and equipment maintenance shall be conducted in a manor to reduce the discharge of pollutants by following these best management practices:

- Conduct routine inspections of heavy equipment and vehicles to proactively identify maintenance needs or potential leaks.
- Use drip pans as needed until repairs can be performed and when drip pans are used, avoid overtopping.

- Drain fluids from leaking or wrecked vehicles and parts as soon as possible. Dispose of fluids properly.
- Perform routine preventive maintenance to ensure heavy equipment and vehicles are operating optimally.
- Recycle or dispose of waste properly and promptly.
- Conduct all body repair and painting work indoors.
- Minimize waste from paints and thinners. Calculate paint needs based on surface area.
- Do not wash or hose down storage areas unless there is prior approval to collect and discharge
 the water into the sanitary sewer. Use dry cleanup methods (vacuum, sweep) to clean up metal
 filings and dust and paint chips from grinding, shaving and sanding. Sweep debris from wet
 sanding after allowing it to dry overnight on the shop floor. Dispose of waste properly; never
 dump waste into storm or sanitary sewers.
- Do not dump any liquids or other materials outside, especially near or in storm drains or ditches.
- Store materials and waste in labeled containers under cover and in secondary containment.
- Chemicals should not be combined in containers.
- Carefully transfer collected fluids from containers into designated storage areas as soon as possible.
- Waste liquids (oil, antifreeze, etc.) should be properly stored on-site and routinely disposed by licensed waste haulers at licensed disposal facilities.
- Store new and used batteries securely to avoid breakage. Store indoors or in secondary containment to contain potential acid leaks. Recycle used batteries.

Parts Cleaning

Cleaning of parts can transport pollutants into the storm drain system or surface waters. The MS4 Permit does not authorize these types of discharges. Best management practices to avoid this include the following:

- Use designated areas for engine, parts, or radiator cleaning. Do not wash or rinse parts outdoors. If parts cleaning equipment is not available, then capture parts cleaning fluids.
- Recycle cleaning solution. Never discharge waste to the sanitary sewer or storm sewer.
- Use steam cleaning or pressure washing of parts instead of solvent cleaning. Cleaning equipment must be connected to an oil/water interceptor prior entering the sanitary sewer.
- When using solvents for cleaning, drain parts over the solvent tank to avoid drips to the floor. Catch excess solutions and divert them back to tank. Allow parts to dry over the hot tank.

Vehicle and Equipment Wash Waters

Washing down of maintenance and fueling areas, as well as equipment and vehicles can transport pollutants into the storm drain system or surface waters. The MS4 Permit does not authorize these types of discharges. Best management practices to ensure that vehicle wash waters are not discharged to the municipal system or surface waters include the following:

- Vehicles and equipment should be washed inside whenever possible to reduce runoff to the stormwater system.
- Grassy and pervious (porous) surfaces may be used to promote direct infiltration of wash water, providing treatment before recharging groundwater and minimizing runoff to an adjacent stormwater system. Pervious surfaces or other infiltration-based systems should not be used within wellhead protection areas or within other protected resources.
- Avoid discharge of any wash water directly to the storm drainage system or surface water (e.g., stream, pond, or drainage swale)
- Do not use solvents except in dedicated solvent parts washer systems.
- Wash vehicles with non-toxic, phosphate-free, biodegradable cleaners
- Wash vehicles on an asphalt lot using a collection system with containment berms and discharge to water quality devices that will remove pollutants. Detergents should not be used in areas where oil/water separators provide pre-treatment of drainage.
- Floor drains should be connected to a sanitary sewer or tight tank. Floor drains discharging to adjacent surface water bodies or engineered storm drain systems should be permanently plugged or otherwise abandoned before any vehicle wash activities are completed.
- Designate separate areas for routine maintenance and vehicle cleaning. This helps prevent contamination of wash water by motor oils, hydraulic lubricants, greases, or other chemicals.

Earth Material Stockpile Areas

Stockpiling material on the site may be needed temporarily or permanently depending on the time or year or town projects. BMPs for protecting stockpiles include adequate cover or temporary stabilization as well as temporary sediment perimeter controls at the base of the stockpile.

- Divert stormwater runoff around stockpile areas.
- Cover stockpiles with plastic, geotextile or temporary seed.
- Temporary sediment perimeter controls, including silt fence, filters socks, or fiber rolls, may be placed a short distance from the base of the stockpile. Maintaining a short distance from the base of the stockpile to the perimeter control is important as it allows water to pond, if needed.

4.2 GOOD HOUSEKEEPING

All exposed areas that are potential sources of pollutants, shall be kept clean using such measures as sweeping at regular intervals. Ensure that trash containers are closed when not in use, keep storage areas well swept and free from leaking or damaged containers; and store leaking vehicles needing repair indoors.

Sweeping and Cleaning of Parking Lots

Vehicle surfaces can collect a variety of contaminants such as sediments, oil, grease, and metals during daily activities. The MS4 permit requires that parking lots are swept, and surrounding areas of the facility are kept clean to reduce runoff of pollutants.

Parking lot sweeping and cleaning follows the same schedule as street sweeping, at least twice per year in Spring and Fall, with additional sweeping as need for specific sites.

Waste Management

All liquid and solid waste must be disposed of properly. Some of the most common sources of pollution at municipal facilities are a result of littering, improper collection of debris, and improper disposal of solid or liquid waste. Best management practices for handling, storage, transfer and disposal of trash and recyclables include the following:

- All waste and recycling receptacles must be leak-tight with tight-fitting lids or covers.
- Keep lids on dumpsters and containers closed at all times unless adding or removing material. If
 using an open-top roll-off dumpster, cover it and tie it down with a tarp unless adding materials.
- Place waste or recycling receptacles indoors or under a roof or overhang whenever possible.
- Locate dumpsters on a flat, paved surface and install berms or curbs around the storage area to prevent run-on and run-off.
- Do not locate dumpsters over or adjacent to catch basins.
- Prior to transporting waste, trash, or recycling, ensure that containers are not leaking (double bag if needed) and properly secure containers to the vehicle.
- Clean up any liquid leaks or spills with dry cleanup methods.
- Arrange for waste or recycling to be picked up regularly and disposed of at approved disposal facilities.
- Never place hazardous materials, liquids, or liquid-containing wastes in a dumpster or recycling or trash container.
- Do not wash trash or recycling containers outdoors or in parking lots.
- Conduct periodic inspections of solid and liquid waste storage areas to check for leaks and spills.
- Conduct periodic inspections of work areas to ensure that all wastes are being disposed of properly.
- In dumpster areas, regularly pick up surrounding trash and debris and regularly sweep the area.
- In compactor areas, regularly check the hydraulic fluid hoses and reservoir to ensure that there are no cracks or leaks. Regularly sweep the area.

4.3 Preventative Maintenance

All equipment and systems shall be regularly inspected, tested, maintained, and repaired to avoid situations that may result in leaks, spills, and other releases of pollutants to stormwater and receiving waters. Inspections shall occur at a minimum once per quarter.

Use Storage and Disposal of Potential Pollutants

Potential pollutants or hazardous wastes that may be used and stored in or around municipal building and facilities include pesticides, paints, cleaners, petroleum products, fertilizers, and solvents. Careful handling and proper storage of these products are the best means of preventing spills and pollution to the environment. Best management practices include the following:

- Storage and handling areas should be covered or enclosed to reduce potential contact with stormwater and wind.
- Potential pollutants should be transported using approved methods and containers to minimize the chance of spillage, and by employees that have familiarity with the potential environmental and human health hazards of the products.
- Proper spill kits applicable to the products being used at each specific building or facility should be easily accessible and marked clearly so employees can follow procedures quickly and effectively. Leaks or spills should be cleaned up in a timely manner.
- Establish separate storage areas for these types of products with measures in place to contain any spill leaking out of the storage area.
- A designated person should be responsible for these areas.
- The storage area should be inspected frequently, kept clean and in good order with proper labels and signs, and consistent disposal practices.
- Floor drains in storage areas should be disconnected from the stormwater system.
- Routinely inspect buildings and facilities for areas of potential leaks.
- Paint and other chemicals should not be applied on the outside of buildings when it is raining or prior to expected rain.
- When sanding, painting, power washing, etc., ensure that sites are properly prepared (e.g., use tarps) and cleaned (e.g., use dry cleaning methods) especially if they are near storm drains. Protect catch basins when maintenance work is conducted upgradient of them.
- When painting, use a drop cloth and clean up any spills immediately.
- Do not leave open containers on the ground where they may accidentally tip over.
- Do not discharge chlorinated pool water into the stormwater system. Water must be properly dechlorinated and tested before it is discharged.
- Ensure that the washwater does not flow into the storm system. Containment or filtering systems should be provided.

4.4 SPILL PREVENTION AND RESPONSE

The permittee shall minimize the potential for leaks, spills, and other releases that may be exposed to stormwater and develop plans for effective response to such spills if or when they occur. At a minimum, the permittee shall have procedures that include:

 Preventive measures such as barriers between material storage and traffic areas, secondary containment provisions, and procedures for material storage and handling.

- Response procedures that include notification of appropriate facility personnel, emergency agencies, and regulatory agencies, and procedures for stopping, containing, and cleaning up leaks, spills and other releases. Measures for cleaning up hazardous material spills or leaks shall be consistent with applicable Resource Conservation and Recovery Act (RCRA) regulations at 40 CFR section 264 and 40 CFR section 265. Employees who may cause, detect, or respond to a spill or leak shall be trained in these procedures and have necessary spill response equipment available. If possible, one of these individuals should be a member of the Pollution Prevention Team; and
- Contact information for individuals and agencies that shall be notified in the event of a leak, spill, or other release. Where a leak, spill, or other release containing a hazardous substance or oil in an amount equal to or in excess of a reportable quantity established under 40 CFR section 110, 40 CFR section 117, or 40 CFR section 302, occurs during a 24-hour period, the permittee shall notify the National Response Center (NRC) at (800) 424-8802 in accordance with the requirements of 40 CFR section 110, 40 CFR section 117, and 40 CFR section 302 as soon as the permittee has knowledge of the discharge. State or local requirements may necessitate reporting spills or discharges to local emergency, public health or drinking water supply agencies, and owners of public drinking water supplies. Contact information shall be in locations that are readily accessible and available.

Spill Prevention Plans

The Town has spill kits and prevention and control plans in place for all buildings and facilities where hazardous wastes are stored or used. These are coordinated with the fire department as necessary.

Per the Massachusetts Clean Water Toolkit Fact Sheet for Spill Prevention and Control Plans, it is recommended that Spill Prevention and Control Plans (SPCP) clearly state measures to stop the source of a spill, contain the spill, clean up the spill, dispose of contaminated materials, and train personnel to prevent and control future spills. The SPCP should define material handling procedures and storage requirements and outline actions necessary to reduce spill potential and impacts on stormwater quality. The plan can be a procedural handbook, or a poster placed in several locations at the site.

4.5 EROSION AND SEDIMENT CONTROL

Structural and non-structural control measures shall be used at the facility to stabilize and contain runoff from exposed areas and to minimize or eliminate onsite erosion and sedimentation. Efforts to achieve this may include the use of flow velocity dissipation devices at discharge locations and within outfall channels where necessary to reduce erosion.

Erosion Control

Site maintenance activities include erosion control, specifically with respect to poor vegetation cover and particularly within 50 feet of surface water. Best management practices include the following:

- Prevention of erosion and sedimentation is preferable to installing treatments devices.
- Protect vegetated and wooded buffers and leave vegetated areas undisturbed to the extent possible.
- Inspect sites regularly for locations of poor vegetation cover, erosion and sedimentation and channelization. If stabilization is required, corrective actions should be identified and implemented as soon as possible.

- If exposed, soils should be stabilized by mulching, seeding with fast-growing native grass and/or planted with native tree and shrubs. Use erosion control blankets when seeding slopes.
- If necessary, slow stormwater runoff velocities with conveyance measures such as riprap channels or vegetated swales, check dams, level spreaders and outlet protection, etc.
- A buffer/filter strip should be left around surface waters. No fertilizers or pesticides should be applied in the buffer/filter strip except where necessary.

4.6 Management of Runoff

The permittee shall manage stormwater runoff from the facility to prevent or reduce the discharge of pollutants. This may include management practices which divert runoff from areas that are potential sources of pollutants, contain runoff in such areas, or reuse, infiltrate or treat stormwater to reduce the discharge of pollutants.

Catch Basin Cleaning Program

All catch basins on the site are to be included in the catch basin inspection and cleaning optimization program.

Stormwater Management BMP Maintenance

Stormwater BMPs for this facility (excluding catch basins) are to be inspected quarterly and maintained as necessary to provide optimum treatment of stormwater runoff. The Town will keep a log of stormwater management structures inspected and report on the condition and maintenance performed. BMPs are included in the SWPPP inspection form provided in **Appendix D.**

The following are maintenance activities and procedures for each type of BMP on the site based on the Massachusetts Stormwater Handbook:

Infiltration BMPs

INFILTRATION BASINS

Infiltration basins are designed to store and treat stormwater based on the sized storage volume. They are implemented to reduce polluted stormwater discharge into nearby water bodies and help to eliminate erosion and flooding. Inspection and maintenance should include the following:

- Inspect the basin after every major storm (within 48 to 72 hours) to ensure proper infiltration of stormwater
- During inspections analyze for differential settlement, erosion, vegetative/tree growth, riprap functionality, sediment accumulation, and vegetative (turf) health
- Clean and maintain basin at least twice per year as well as any pretreatment devices (ideally every other month)

LEACHING CATCH BASINS

A leaching catch basin is a pre-cast concrete barrel and riser with an open bottom the allows runoff to infiltrate into the ground. These can be configured as a stand-alone structure or combined with a deep sump catch basin to provide pretreatment. Leaching basins are typically set in an excavation lined with a geotextile liner to prevent fine soil particles from migrating into the void spaces of the stone surrounding it. Inspection and maintenance should include the following:

- Inspect unit and remove debris
- Remove sediment when the basin is 50% full
- Rehabilitate the basin as needed if it fails do to clogging

Conveyance BMPs

WATER QUALITY SWALE

Water quality swales are vegetated open channels designed to treat a required water quality volume and incorporate specific features to enhance pollutant removal. Inspection and maintenance should be conducted annually and include the following:

- Inspection make sure vegetation is adequate and slopes are not eroding, check for rilling and gullying, ponding and sedimentation
- Manually remove sediment and debris
- Mow swale depending on vegetation type if grass, now when height reaches 6 inches but do not cut shorter than 3 inches
- Repair eroded areas and re-vegetate if needed
- Re-seed as necessary

Other BMPs

WATER QUALITY UNIT (OIL/GRIT SEPARATOR)

Water quality units, also referred to as oil/grit separators, are underground storage tanks with chambers designed to remove heavy particles, floating debris and hydrocarbons from stormwater. These units are typically considered a pretreatment BMP for land uses with higher potential pollutant loads and risk of petroleum spills. Cleaning these units is important to prevent sediment from resuspending and discharging during future storm events. Inspection and maintenance should include the following:

- Inspect and clean unit cleaning includes removal of accumulated oils and grease and sediment using a vacuum truck or other ordinary catch basin cleaning device
- Polluted water or sediments removed from an oil grit separator unit should be disposed of in accordance with all applicable local, state and federal laws and regulations including M.G.L.c.21C and 310 CMR 30.00.

STONE CHIP OR GRAVEL DRIVEWAYS AND PARKING AREAS

Stone chip or gravel surfaces allows parking lot, driveway and/or roadway runoff to infiltrate directly into the soil. They need to be designed and constructed with a base similar to a traditional road in order to prevent ponding of water and washout. Inspection should be conducted annually, and maintenance as needed including the following:

- Inspect the surface annually for deterioration and assess exfiltration capacity- monitor after a storm to ensure the surface drains properly without ponding
- Remove debris (leaves, sticks, weeds, etc.) on a weekly basis

 Regrade surface for proper drainage and add new stone/gravel where necessary to fill holes and ruts

Apply a fresh layer of gravel to the surface every 1-2 years

Additional guidance for Structural BMP operations and maintenance can be found in the latest version of the Massachusetts Department of Environmental Protection Stormwater Handbook, Volume 2, Chapter 2, located at: http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/v2c2.pdf

4.7 SALT STORAGE PILES OR PILES CONTAINING SALT

For storage piles of salt or piles containing salt used for deicing or other purposes (including maintenance of paved surfaces) for which the discharge during precipitation events discharges to the permittee's MS4, any other storm sewer system, or to a Water of the US, the permittee shall prevent exposure of the storage pile to precipitation by enclosing or covering the storage piles. As of July 1, 2020, such piles shall be enclosed or covered. The permittee shall implement appropriate measures (e.g., good housekeeping, diversions, containment) to minimize exposure resulting from adding to or removing materials from the pile. The permittee is encouraged to store piles in such a manner as not to impact surface water resources, ground water resources, recharge areas, and wells.

4.8 EMPLOYEE TRAINING

The permittee shall regularly train employees who work in areas where materials or activities are exposed to stormwater, or who are responsible for implementing activities identified in the SWPPP (e.g., inspectors, maintenance personnel), including all members of the Pollution Prevention Team. Training shall cover both the specific components and scope of the SWPPP, and the control measures required under this part, including spill response, good housekeeping, material management practices, any best management practice operation and maintenance, etc. EPA recommends annual training.

The permittee shall document the following information for each training:

- The training date, title and training duration
- List of municipal attendees
- Subjects covered during training

4.9 Maintenance of Control Measures

The permittee shall maintain all control measures, required by the permit in effective operating condition. The permittee shall keep documentation onsite that describes procedures and a regular schedule for preventative maintenance of all control measures and discussions of back-up practices in place should a runoff event occur while a control measure is off-line. Nonstructural control measures shall also be diligently maintained (e.g., spill response supplies available, personnel trained).

5.0 SITE INSPECTIONS

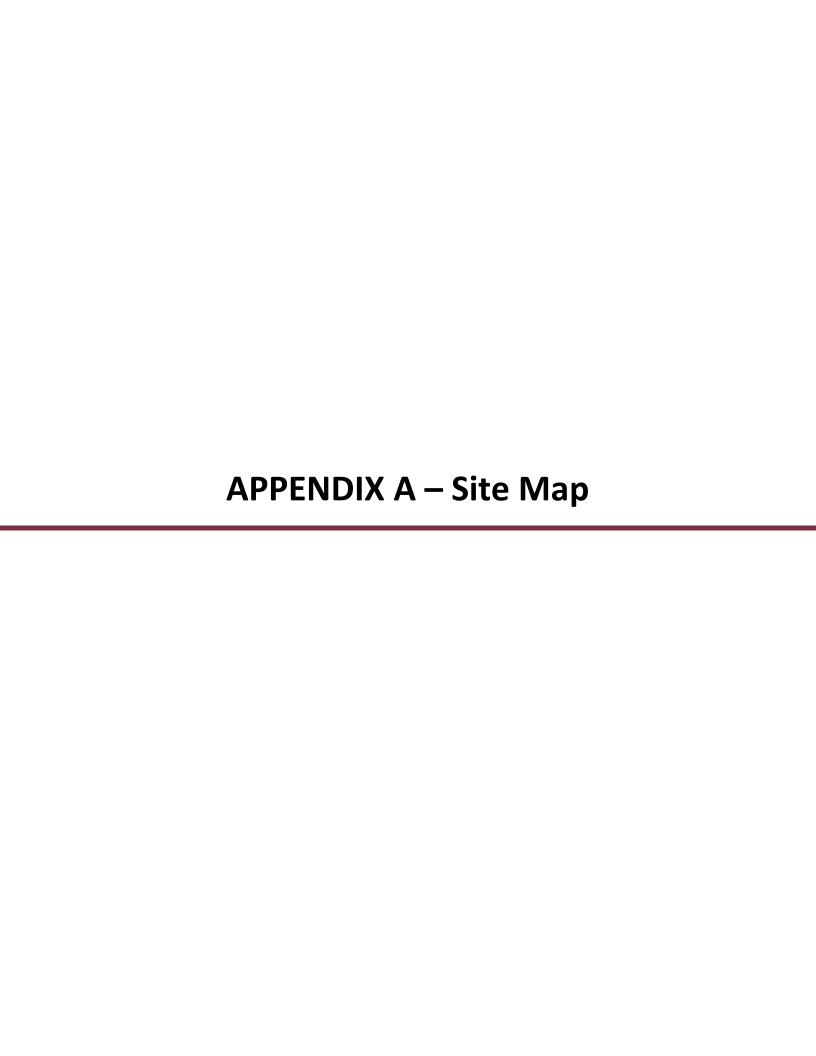
Inspect all areas that are exposed to stormwater and all stormwater control measures. Inspections shall be conducted at least once each calendar quarter (winter, spring, summer and fall). The quarters begin on January 1, April 1, July 1 and October 1. More frequent inspections may be required if significant activities are exposed to stormwater. Inspections shall be performed when the facility is in operation. At least one of the quarterly inspections shall occur during a period when a stormwater discharge is occurring.

The permittee shall document the following information for each facility inspection:

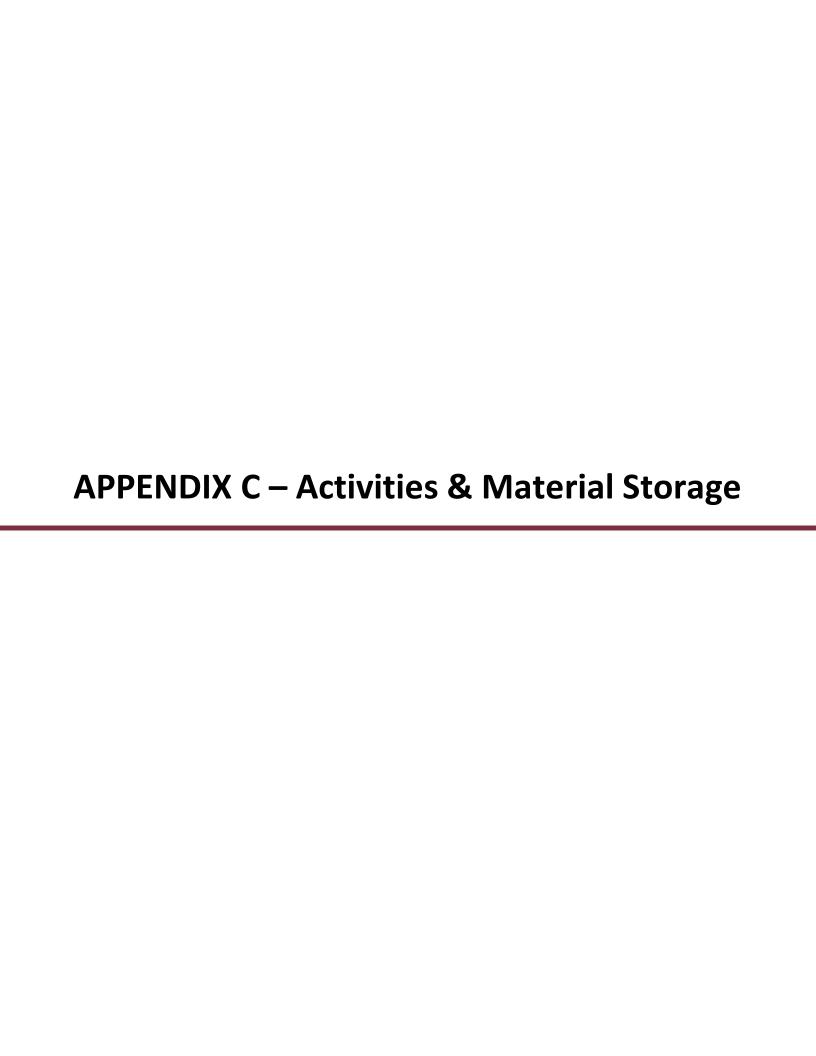
- The inspection date and time
- The name of the inspector
- Weather information and a description of any discharge occurring at the time of the inspection
- Identification of any previously unidentified discharges from the site
- Any control measures needing maintenance or repair
- Any failed control measures that need replacement
- Any SWPPP changes required as a result of the inspection

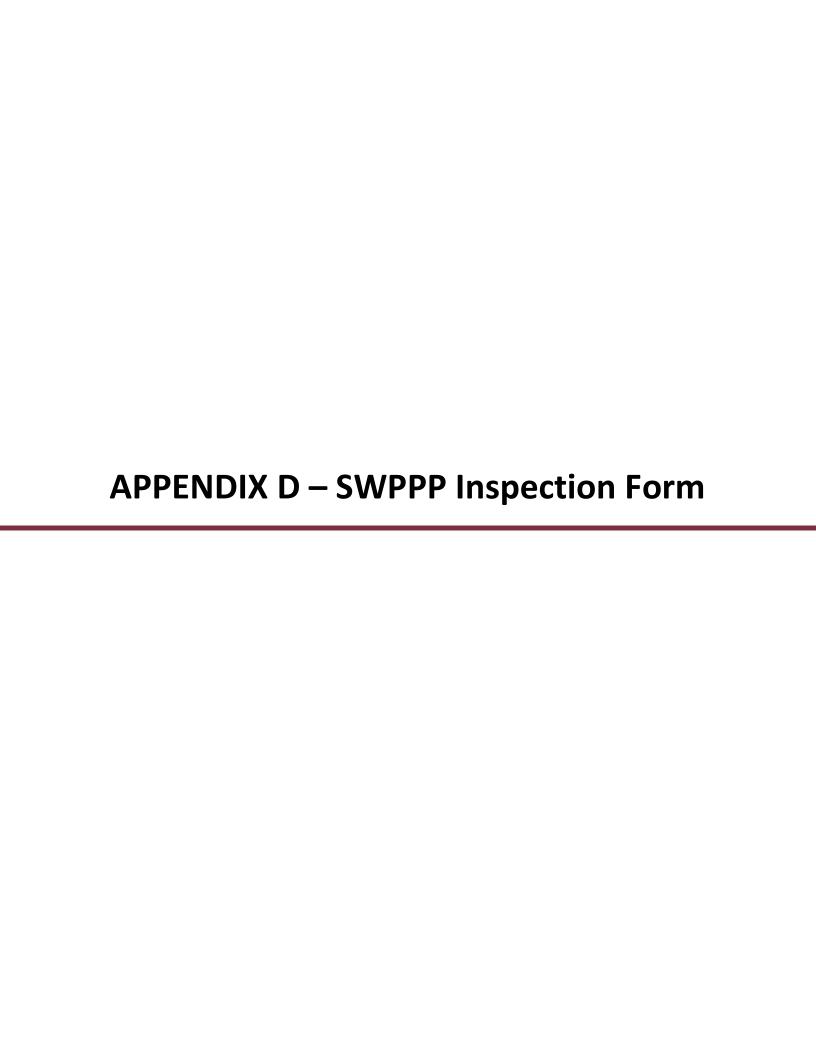
If during the inspections, or any other time, the permittee identifies control measures that need repair or are not operating effectively, the permittee shall repair or replace them before the next anticipated storm event if possible, or as soon as practicable following that storm event. In the interim, the permittee shall have back-up measures in place.

A SWPPP inspection form is provided in **Appendix D**. The permittee shall report the findings from the Site Inspections in the annual report.



6.0 RECOMMENDATIONS


Based on BETA's May 28, 2021 site visit, we are providing the following recommendations to attain or maintain compliance with the MS4 permit requirements.


- 1. Catch basin by DPW wash bay is full of sediment and requires cleaning and there was significant sediment buildup outside the vehicle door. Remove sediment and increase sweeping frequency.
- 2. Grade level water sluice in front of DPW building discharges pollutants from parking lot without pretreatment directly to the reservoir outlet stream. It is recommended the Town regrade the lot to the existing catch basin or provide an alternative to mitigate runoff into the nearby brook. Consider water quality unit or another BMP to treat turbid water from driveway.

